The study of nanocrystalline SnO2 (n-SnO2) and SiO2-doped SnO2 (n-Si-SnO2) samples pre-pared by the sol-gel process showed that SiO2 doping can effectively restrained the growth of nanocrystalline SnO2 grains, thus im...The study of nanocrystalline SnO2 (n-SnO2) and SiO2-doped SnO2 (n-Si-SnO2) samples pre-pared by the sol-gel process showed that SiO2 doping can effectively restrained the growth of nanocrystalline SnO2 grains, thus improving thermal stability of the materials.展开更多
Cu^2+-doped nanostructured TiO2-coated SiO2 (TiO2/SiO2) particles were prepared by the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized by the sol-gel ...Cu^2+-doped nanostructured TiO2-coated SiO2 (TiO2/SiO2) particles were prepared by the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized by the sol-gel method using TiOSO4 as a precursor. The experimental results showed that TiO2 nanopowders on the surface of SiO2 particles were well distributed and compact. The amount of TiO2 increased with the increase in coating layers. The shell structure appeared to be composed of anatase titania nanocrystals at 550℃. The 2-layer coated TiO2 particles on the surface showed a higher degradation rate compared with all the different-layer samples. The photocatalytic activity of Cu^2+-doped TiO2/SiO2 was higher than that ofundoped TiO2/SiO2. The optimum dopant content was about 0.10wt%.展开更多
Cerium-doped SiO2/TiO2 nanostructured fibers were fabricated by electrospinning technology. The prepared fibers were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray dif...Cerium-doped SiO2/TiO2 nanostructured fibers were fabricated by electrospinning technology. The prepared fibers were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Using the fibers as catalysts, photoeatalytic degradation of Methylene Blue (MB) aqueous solution was carded out under simulated sunlight. The 0.2% Ce doping proved to be the optimal concentration for the doping of TiO2/SiO2, compared to other Ce-doped molar concentrations. The 0.2% Ce-doped SiOdTiO2 fibers exhibited higher photocatalytic activity than industrial Degussa P25 and the samples doped with only Ce or SIO2. The reasons for improving the photocatalytic activity were also discussed. Several operational parameters were studied, which showed that the photocatalytic efficiency of MB was influenced by parameters such as the initial dye concentration, the initial pH, inorganic anions, and so on. In addition, the influences of an electron acceptor and a radical scavenger suggested that OH was the dominant photooxidant during the photocatalytic process. The reuse evaluation of the fibers indicated that their photocatalytic activity had good stability.展开更多
Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing...Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing the sol-gel method with TiChas a precursor. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), SEM, EDS, XPS, and XRD. The experimental results show that TiO2 nanopowders on the surface of SiO2 particles are well distributed, the amount of TiO2 is increased with the adding of coating layers, the pure anatase-TiO2 coating layers are synthesized at 500℃, and the photocatalytic activity of Fe^3+-doped TiO2/SiO2 is higher than that of undoped TiO2/SiO2.展开更多
Propylene,a readily accessible and economically viable light olefin,has garnered substantial interest for its potential conversion into valuable higher olefins through oligomerization processes.The distribution of pro...Propylene,a readily accessible and economically viable light olefin,has garnered substantial interest for its potential conversion into valuable higher olefins through oligomerization processes.The distribution of products is profoundly influenced by the catalyst structure.In this study,Fe_(2)O_(3)-doped NiSO_(4)/Al_(2)O_(3) catalysts have been meticulously developed to facilitate the selective trimerization of propylene under mild conditions.Significantly,the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst demonstrates an enhanced reaction rate(48.5 mmol_(C3)/(g_(cat).·h)),alongside a high yield of C9(~32.2%),significantly surpassing the performance of the NiSO_(4)/Al_(2)O_(3) catalyst(C9:~24.1%).The incorporation of Fe_(2)O_(3) modifies the migration process of sulfate ions,altering the Lewis acidity of the electron-deficient Ni and Fe sites on the catalyst and resulting a shift in product distribution from a Schulz-Flory distribution to a Poisson distribution.This shift is primarily ascribed to the heightened energy barrier for theβ-H elimination reaction in the C6 alkyl intermediates on the doped catalyst,further promoting polymerization to yield a greater quantity of Type II C9.Furthermore,the validation of the Cossee-Arlman mechanism within the reaction pathway has been confirmed.It is noteworthy that the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst exhibits remarkable stability exceeding 80 h in the selective trimerization of propylene.These research findings significantly enhance our understanding of the mechanisms underlying olefin oligomerization reactions and provide invaluable insights for the development of more effective catalysts.展开更多
A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence...A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence was attributed to ^5D3→^7F5, ^5D3→^7F4, ^5D3→^7F3, ^5D4→^7F6, ^5D4→^7F5, ^5D4→^7F4, and ^5D4→^7F3 transitions of Tb^3+. The relationship between upconversion luminescence intensity and the pump power indicated that a three-photon simultaneous absorption process was dominant in this upconversion luminescence. The intense red, green, and blue upconversion luminescence of Tb^3+-doped CaO-Al2O3-SiO2 glass may be potentially useful in developing three-dimensional display applications.展开更多
With the increasing demand for non-co ntact fluorescence intensity ratio-based optical thermometry,novel phosphor materials with high-efficiency,dual-emitting centers,and differentiable temperature sensitivity are hig...With the increasing demand for non-co ntact fluorescence intensity ratio-based optical thermometry,novel phosphor materials with high-efficiency,dual-emitting centers,and differentiable temperature sensitivity are highly desired,In this wo rk,rare earth Eu^(2+) ions were incorporated Wnto CsCu_(2)I_(3) microcrystals by solidstate reaction,Under a single UV excitation,the as-synthesized samples exhibit two emissions:452 nm blue emission from the 5d→4f transition of Eu^(2+)and 582 nm yellow emission from self-trapped exciton e mission of CsCu_(2)I_(3).The photoluminescence quantum yield reaches to 50%,The dual-band emission of Eu^(2+)-doped CsCu_(2)I_(3) shows different temperature responses in the range of 260-360 K.Based on fluorescence intensity ratio technology,the maximum absolute sensitivity and re Iative sensitivity are 0.091 K^(-1)(at 360 K) and 2.60%/K(at 260 K),respectively.These results suggest that Eu^(2+)-doped GsCu_(2)I_(3) could be a good candidate for highly sensitive optical thermometer.展开更多
We report the structural and photoluminescence(PL) properties of Nd^(3+)-doped Y_(2)O_(3)-SiO_(2) powders(Y_(2)O_(3)-SiO_(2):Nd^(3+)) as functions of annealing temperature and Nd^(3+) ion doping concentration.Y_(2)O_(...We report the structural and photoluminescence(PL) properties of Nd^(3+)-doped Y_(2)O_(3)-SiO_(2) powders(Y_(2)O_(3)-SiO_(2):Nd^(3+)) as functions of annealing temperature and Nd^(3+) ion doping concentration.Y_(2)O_(3)-SiO_(2):Nd^(3+)powders were prepared using the high-energy ball-milling(HEBM) method,and their structural and PL properties were investigated using X-ray diffraction(XRD),Fourier transform infrared(FTIR) spectroscopy,and PL spectroscopy.The XRD results reveal a cubic phase without impurities,and the peak broadening decreases with an increase in annealing temperature due to the increase in the crystallite size.The PL emission intensity increases with an increase in annealing temperature.The highest PL emission intensity is observed for the 300-min milled mixture annealed at 1000℃ for 1 h with a Nd^(3+) concentration of 1 mol%.The PL peaks excited by 800 nm radiation were detected,centered at 1080 nm(^(4)F_(3/2)→^(4)I_(11/2)) and 1350 nm(^(4)F_(3/2)→^(4)I_(13/2)).展开更多
Y2O3-doped Mo secondary emitters were prepared by liquid-liquid doping and solid-solid doping,respectively.The back-scattered scanning observation result indicates that the emitter prepared by liquid-liquid doping has...Y2O3-doped Mo secondary emitters were prepared by liquid-liquid doping and solid-solid doping,respectively.The back-scattered scanning observation result indicates that the emitter prepared by liquid-liquid doping has fine microstructure whereas that prepared by solid-solid doping has large grain size.Y2O3-doped Mo emitter with small grain size prepared by liquid-liquid doping exhibits high emission property,i.e.,the secondary electron yield can get to 5.24,about 1.7 times that prepared by solid-solid doping.Moreover,Y2O3-doped Mo emitter exhibits the best emission performance among La2O3-doped Mo,Y2O3-doped Mo, Gd2O3-doped Mo and Ce2O3-doped Mo emitters due to the largest penetration depth of primary electrons and escape depth of secondary electrons in this emitter.The secondary emission of the emitter with small grain size can be explained by reflection emission model and transmission emission model,whereas only transmission emission exists in the emitter with large grain size.展开更多
SiO2 glasses co-doped with Al3+ ions were prepared by a sol-gel method by holding 0.5% of Ce3+ ions constant and varying the Al3+ ions concentrations.Thermal stability,the structural,chemical and the optical propertie...SiO2 glasses co-doped with Al3+ ions were prepared by a sol-gel method by holding 0.5% of Ce3+ ions constant and varying the Al3+ ions concentrations.Thermal stability,the structural,chemical and the optical properties of the samples were studied by using differential scanning calorimetric(DSC),thermo gravimetric analysis(TGA),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),UV-vis spectroscopy and photoluminescence spectroscopy(PL).The DSC and TGA of samples depicted that the presence of dopant and co-dopant decreased the endothermic peak temperature and the yield respectively.SEM images showed that the particles were in the nano-range and spherical in shape.The XRD showed that all the samples were amorphous.The UV absorption measurements indicated that the presence of Al3+ ions significantly reduced the SiO2 absorption band,increased the absorbance intensity of SiO2 and decreased the transmittance as compared to the presence of the Ce3+ ions alone.The photoluminescence results displayed an optimum increase in luminescence intensity when the ratio of Al:Ce was 10:1 and further increase in aluminum content quenched the luminous intensity.展开更多
Al-doped and B, Al-codoped silica xerogel was fabricated by sol-gel process. The influence of B ions and annealing temperature on luminescent properties of phosphors were studied by using fluorescence spectrum, X-ray ...Al-doped and B, Al-codoped silica xerogel was fabricated by sol-gel process. The influence of B ions and annealing temperature on luminescent properties of phosphors were studied by using fluorescence spectrum, X-ray diffraction, DSC, TG/DTG analysis and IR spectrum. The heat treatment has a large effect on the luminescent properties. Under 248 nm excitation, the emission spectrum of samples heated shows characteristic emission peaks of Eu^3+ ions are, which are due to the transitions of ^5D0→^7FJ(J = 0, 1, 2, 3, 4) of Eu^3+ , respectively. The transition of ^5D0→^7F1 is split into two peaks.展开更多
The Sm^(3+)-doped SrO-Al2O3-SiO2(SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-...The Sm^(3+)-doped SrO-Al2O3-SiO2(SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated by DTA, XRD, SEM and luminescence spectroscopy. The results indicate that the crystal phase precipitated in this system is monocelsian(SrAl2Si2O) and with the increase of nucleation/crystallization temperature, the crystallite increases from 66 % to 79 %. The Sm(3+)-doped SAS glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm under the excitation of 475 nm blue light which can be assigned to the 4 G5/2→6 Hj/2(j=5, 7, 9, 11) transitions ofSm^(3+), respectively. Besides, by increasing the crystallization temperature or the concentration ofSm^(3+), the emission lights of the samples located at 565, 605 and 650 nm are intensified significantly. The present results demonstrate that theSm^(3+)-doped SAS glassceramics are promising luminescence materials for white LED devices by fine controlling and combining of these three green, orange and red lights in appropriate proportion.展开更多
Er3+-doped tellurite glass(TeO2-ZnO-Na2O) prepared using the conventional melt-quenching method is modified by introducing the SiO2,and its effects on the thermal stability of glass host and the 1.53 μm band spectros...Er3+-doped tellurite glass(TeO2-ZnO-Na2O) prepared using the conventional melt-quenching method is modified by introducing the SiO2,and its effects on the thermal stability of glass host and the 1.53 μm band spectroscopic properties of Er3+ are investigated by measuring the absorption spectra,1.53 μm band fluorescence spectra,Raman spectra and differential scanning calorimeter(DSC) curves.It is found that for Er3+-doped tellurite glass,besides improving its thermal stability,introducing SiO2 is helpful for the further improvement of the fluorescence full width at half maximum(FWHM) and bandwidth quality factor.The results indicate that the prepared Er3+-doped tellurite glass containing an appropriate amount of SiO2 has good prospect as a candidate of gain medium applied for 1.53 μm broadband amplifier.展开更多
The SiO2 films was firstly implanted by 120 keV C-ions at room temperature (RT) and then irradiated at RT with 4.57 MeV/u Pb ions. The implantation was performed on 200 kV Heavy Ion Implanter (IMP, Lanzhou) to the dos...The SiO2 films was firstly implanted by 120 keV C-ions at room temperature (RT) and then irradiated at RT with 4.57 MeV/u Pb ions. The implantation was performed on 200 kV Heavy Ion Implanter (IMP, Lanzhou) to the dose ranging from 2.0×10^17C/cm^2 to 8.6×10^17C/cm^2,The irradiation was performed at CARIL-GANIL,Caen,France to the fluence ranging from 5.0×10^11Pb/cm^2 to 3.8×10^12Pb/cm^2.Some parameters were given in Table 1(TRIM 96 calculation)。展开更多
SiO2 films were firstly implanted by 120 keV C-ions at room temperature (RT) and then irradiated at RT with 1.75 GeV Xe ions. The implantation was performed on 200 kV Heavy Ion Implanter (IMP, Lanzhou) to a dose in th...SiO2 films were firstly implanted by 120 keV C-ions at room temperature (RT) and then irradiated at RT with 1.75 GeV Xe ions. The implantation was performed on 200 kV Heavy Ion Implanter (IMP, Lanzhou) to a dose in the range from 5.0×1016 to 8.6×1017 C/cm2. The Xe ion irradiation was carried out at HIRFL (Lanzhou) and the irradiation fluence was 5.0×1011 Xe/cm2. The new chemical bonds formed in the samples were investigated by use of micro-FTIR spectroscopy. Some parameters were given in Table 1.展开更多
The selective catalytic reduction of NOV with NH3 (NH3-SCR) is a very effective technology to control the emission of NOA, and the thermal stability of NH3-SCR catalyst is very important for removal of NOV from diesel...The selective catalytic reduction of NOV with NH3 (NH3-SCR) is a very effective technology to control the emission of NOA, and the thermal stability of NH3-SCR catalyst is very important for removal of NOV from diesel engines. In this work, V2O5/WO3-TiO2 (VWT) and SiO2- doped V2O5/WO3-TiO2 (VWTSi10)) catalysts were prepared by impregnation method and characterized by Brunauer- Emmett-Teller (BET), X-ray diffraction (XRD), Raman, temperature programmed reduction by hydrogen (H2-TPR), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption by ammonia (NH3- TPD). The doping of SiO2 promotes the thermal stability of V2O5/WO3-TiO? for NH3-SCR significantly. After calcination at 650 °C for 50 h, the operation window of 10% SiO2-doped V2O5/WO3-TiO2 is 220-480 °C, while the maximum NOV conversion on V2O5/WO3-TiO2 is about 77%. The presenee of SiO2 obviously blocks the transformation of TiO2 from anatase to rutile and stabilizes the dispersion of VOv and WO3 on the surface. It is available for the existence of V44 and the amount of surface acid sites increases, which inhabits the NH3 oxidation at the high temperature range and promotes NH3-SCR activity.展开更多
In this work,Eu^(3+)-doped CsPbCl_(2)Br_(1) in borosilicate glass was successfully synthesized by the melt quenching annealing technique and crystallization method.This work reports a novel Eu^(3+)-doped CsPbCl_(2)Br_...In this work,Eu^(3+)-doped CsPbCl_(2)Br_(1) in borosilicate glass was successfully synthesized by the melt quenching annealing technique and crystallization method.This work reports a novel Eu^(3+)-doped CsPbCl_(2)Br_(1) perovskite quantum dots(QDs)glass with high sensitivity for optical temperature sensing.The relation of fluorescence intensity ratio(FIR)with the temperature was studied in the temperature range of 80-440 K.Notably,the maximum absolute temperature sensitivity(Sa)and relative temperature sensitivity(Sr)of Eu^(3+)-doped CsPbCl_(2)Br_(1) perovskite QDs glass can reach as high as 0.0315 K-1 and3.097%/K,respectively.Meanwhile,Eu^(3+)-doped CsPbCl_(2)Br_(1) QDs glass demonstrates good water resistance,excellent thermal and cold cycling stability performance,The Eu^(3+)-doped QDs glass materials can bring inspiration to the future exploration of rare earth ion-doped QDs glass material on the application of optical temperature sensing in the future.展开更多
文摘The study of nanocrystalline SnO2 (n-SnO2) and SiO2-doped SnO2 (n-Si-SnO2) samples pre-pared by the sol-gel process showed that SiO2 doping can effectively restrained the growth of nanocrystalline SnO2 grains, thus improving thermal stability of the materials.
基金the Department of Education of Hebei Province, China (No.2005362)
文摘Cu^2+-doped nanostructured TiO2-coated SiO2 (TiO2/SiO2) particles were prepared by the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized by the sol-gel method using TiOSO4 as a precursor. The experimental results showed that TiO2 nanopowders on the surface of SiO2 particles were well distributed and compact. The amount of TiO2 increased with the increase in coating layers. The shell structure appeared to be composed of anatase titania nanocrystals at 550℃. The 2-layer coated TiO2 particles on the surface showed a higher degradation rate compared with all the different-layer samples. The photocatalytic activity of Cu^2+-doped TiO2/SiO2 was higher than that ofundoped TiO2/SiO2. The optimum dopant content was about 0.10wt%.
基金supported by the National Natural Science Foundation of China (No. 20907022,21003094)the Doctoral Program of Higher Education of China(No. 200800551003,20100032120066)the Special Projects of Environmental Protection (No. 2009ZX07526,2009ZX07208,200909101,2009GJA10021)
文摘Cerium-doped SiO2/TiO2 nanostructured fibers were fabricated by electrospinning technology. The prepared fibers were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Using the fibers as catalysts, photoeatalytic degradation of Methylene Blue (MB) aqueous solution was carded out under simulated sunlight. The 0.2% Ce doping proved to be the optimal concentration for the doping of TiO2/SiO2, compared to other Ce-doped molar concentrations. The 0.2% Ce-doped SiOdTiO2 fibers exhibited higher photocatalytic activity than industrial Degussa P25 and the samples doped with only Ce or SIO2. The reasons for improving the photocatalytic activity were also discussed. Several operational parameters were studied, which showed that the photocatalytic efficiency of MB was influenced by parameters such as the initial dye concentration, the initial pH, inorganic anions, and so on. In addition, the influences of an electron acceptor and a radical scavenger suggested that OH was the dominant photooxidant during the photocatalytic process. The reuse evaluation of the fibers indicated that their photocatalytic activity had good stability.
基金the Nationnal Natural Science Foundation of China (No. 50342016).
文摘Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing the sol-gel method with TiChas a precursor. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), SEM, EDS, XPS, and XRD. The experimental results show that TiO2 nanopowders on the surface of SiO2 particles are well distributed, the amount of TiO2 is increased with the adding of coating layers, the pure anatase-TiO2 coating layers are synthesized at 500℃, and the photocatalytic activity of Fe^3+-doped TiO2/SiO2 is higher than that of undoped TiO2/SiO2.
文摘Propylene,a readily accessible and economically viable light olefin,has garnered substantial interest for its potential conversion into valuable higher olefins through oligomerization processes.The distribution of products is profoundly influenced by the catalyst structure.In this study,Fe_(2)O_(3)-doped NiSO_(4)/Al_(2)O_(3) catalysts have been meticulously developed to facilitate the selective trimerization of propylene under mild conditions.Significantly,the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst demonstrates an enhanced reaction rate(48.5 mmol_(C3)/(g_(cat).·h)),alongside a high yield of C9(~32.2%),significantly surpassing the performance of the NiSO_(4)/Al_(2)O_(3) catalyst(C9:~24.1%).The incorporation of Fe_(2)O_(3) modifies the migration process of sulfate ions,altering the Lewis acidity of the electron-deficient Ni and Fe sites on the catalyst and resulting a shift in product distribution from a Schulz-Flory distribution to a Poisson distribution.This shift is primarily ascribed to the heightened energy barrier for theβ-H elimination reaction in the C6 alkyl intermediates on the doped catalyst,further promoting polymerization to yield a greater quantity of Type II C9.Furthermore,the validation of the Cossee-Arlman mechanism within the reaction pathway has been confirmed.It is noteworthy that the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst exhibits remarkable stability exceeding 80 h in the selective trimerization of propylene.These research findings significantly enhance our understanding of the mechanisms underlying olefin oligomerization reactions and provide invaluable insights for the development of more effective catalysts.
基金supported by the Education Department of Zhejiang Province (20050359)
文摘A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence was attributed to ^5D3→^7F5, ^5D3→^7F4, ^5D3→^7F3, ^5D4→^7F6, ^5D4→^7F5, ^5D4→^7F4, and ^5D4→^7F3 transitions of Tb^3+. The relationship between upconversion luminescence intensity and the pump power indicated that a three-photon simultaneous absorption process was dominant in this upconversion luminescence. The intense red, green, and blue upconversion luminescence of Tb^3+-doped CaO-Al2O3-SiO2 glass may be potentially useful in developing three-dimensional display applications.
基金supported by the National Natural Science Foundation of China (62205072)Natural Science Foundation of Guangxi(2022GXNSFBA035656)+1 种基金Science and Technology Agency of Guangxi (GuikeAD20159054)Education Department of Guangxi (2019KY0004)。
文摘With the increasing demand for non-co ntact fluorescence intensity ratio-based optical thermometry,novel phosphor materials with high-efficiency,dual-emitting centers,and differentiable temperature sensitivity are highly desired,In this wo rk,rare earth Eu^(2+) ions were incorporated Wnto CsCu_(2)I_(3) microcrystals by solidstate reaction,Under a single UV excitation,the as-synthesized samples exhibit two emissions:452 nm blue emission from the 5d→4f transition of Eu^(2+)and 582 nm yellow emission from self-trapped exciton e mission of CsCu_(2)I_(3).The photoluminescence quantum yield reaches to 50%,The dual-band emission of Eu^(2+)-doped CsCu_(2)I_(3) shows different temperature responses in the range of 260-360 K.Based on fluorescence intensity ratio technology,the maximum absolute sensitivity and re Iative sensitivity are 0.091 K^(-1)(at 360 K) and 2.60%/K(at 260 K),respectively.These results suggest that Eu^(2+)-doped GsCu_(2)I_(3) could be a good candidate for highly sensitive optical thermometer.
基金The authors would like to thank the financial support by a 2019 research fund from Chosun University.
文摘We report the structural and photoluminescence(PL) properties of Nd^(3+)-doped Y_(2)O_(3)-SiO_(2) powders(Y_(2)O_(3)-SiO_(2):Nd^(3+)) as functions of annealing temperature and Nd^(3+) ion doping concentration.Y_(2)O_(3)-SiO_(2):Nd^(3+)powders were prepared using the high-energy ball-milling(HEBM) method,and their structural and PL properties were investigated using X-ray diffraction(XRD),Fourier transform infrared(FTIR) spectroscopy,and PL spectroscopy.The XRD results reveal a cubic phase without impurities,and the peak broadening decreases with an increase in annealing temperature due to the increase in the crystallite size.The PL emission intensity increases with an increase in annealing temperature.The highest PL emission intensity is observed for the 300-min milled mixture annealed at 1000℃ for 1 h with a Nd^(3+) concentration of 1 mol%.The PL peaks excited by 800 nm radiation were detected,centered at 1080 nm(^(4)F_(3/2)→^(4)I_(11/2)) and 1350 nm(^(4)F_(3/2)→^(4)I_(13/2)).
基金Projects(2006AA03Z524,2008AA031001)supported by the National Hi-tech Research and Development Program of ChinaProject(50801001)supported by the National Natural Foundation of China
文摘Y2O3-doped Mo secondary emitters were prepared by liquid-liquid doping and solid-solid doping,respectively.The back-scattered scanning observation result indicates that the emitter prepared by liquid-liquid doping has fine microstructure whereas that prepared by solid-solid doping has large grain size.Y2O3-doped Mo emitter with small grain size prepared by liquid-liquid doping exhibits high emission property,i.e.,the secondary electron yield can get to 5.24,about 1.7 times that prepared by solid-solid doping.Moreover,Y2O3-doped Mo emitter exhibits the best emission performance among La2O3-doped Mo,Y2O3-doped Mo, Gd2O3-doped Mo and Ce2O3-doped Mo emitters due to the largest penetration depth of primary electrons and escape depth of secondary electrons in this emitter.The secondary emission of the emitter with small grain size can be explained by reflection emission model and transmission emission model,whereas only transmission emission exists in the emitter with large grain size.
基金the National Research Foundation and the University of the Free Statefor financial support
文摘SiO2 glasses co-doped with Al3+ ions were prepared by a sol-gel method by holding 0.5% of Ce3+ ions constant and varying the Al3+ ions concentrations.Thermal stability,the structural,chemical and the optical properties of the samples were studied by using differential scanning calorimetric(DSC),thermo gravimetric analysis(TGA),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),UV-vis spectroscopy and photoluminescence spectroscopy(PL).The DSC and TGA of samples depicted that the presence of dopant and co-dopant decreased the endothermic peak temperature and the yield respectively.SEM images showed that the particles were in the nano-range and spherical in shape.The XRD showed that all the samples were amorphous.The UV absorption measurements indicated that the presence of Al3+ ions significantly reduced the SiO2 absorption band,increased the absorbance intensity of SiO2 and decreased the transmittance as compared to the presence of the Ce3+ ions alone.The photoluminescence results displayed an optimum increase in luminescence intensity when the ratio of Al:Ce was 10:1 and further increase in aluminum content quenched the luminous intensity.
文摘Al-doped and B, Al-codoped silica xerogel was fabricated by sol-gel process. The influence of B ions and annealing temperature on luminescent properties of phosphors were studied by using fluorescence spectrum, X-ray diffraction, DSC, TG/DTG analysis and IR spectrum. The heat treatment has a large effect on the luminescent properties. Under 248 nm excitation, the emission spectrum of samples heated shows characteristic emission peaks of Eu^3+ ions are, which are due to the transitions of ^5D0→^7FJ(J = 0, 1, 2, 3, 4) of Eu^3+ , respectively. The transition of ^5D0→^7F1 is split into two peaks.
基金Funded by the National Natural Science Foundation of China(No.5137217)Hubei Province Foreign Science and Technology Project(No.2016AHB027)Science and Technology Planning Project of Hubei Province(No.2014BAA136)
文摘The Sm^(3+)-doped SrO-Al2O3-SiO2(SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated by DTA, XRD, SEM and luminescence spectroscopy. The results indicate that the crystal phase precipitated in this system is monocelsian(SrAl2Si2O) and with the increase of nucleation/crystallization temperature, the crystallite increases from 66 % to 79 %. The Sm(3+)-doped SAS glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm under the excitation of 475 nm blue light which can be assigned to the 4 G5/2→6 Hj/2(j=5, 7, 9, 11) transitions ofSm^(3+), respectively. Besides, by increasing the crystallization temperature or the concentration ofSm^(3+), the emission lights of the samples located at 565, 605 and 650 nm are intensified significantly. The present results demonstrate that theSm^(3+)-doped SAS glassceramics are promising luminescence materials for white LED devices by fine controlling and combining of these three green, orange and red lights in appropriate proportion.
基金supported by the National Natural Science Foundation of China(No.61178063)the Graduate Innovative Scientific Research Project of Zhejiang Province(No.YK2010048)+1 种基金the Scientific Research Foundation of Graduate School of Ningbo University(No.G13035)the K.C.Wong Magna Fund and Hu Lan Outstanding Doctoral Fund in Ningbo University
文摘Er3+-doped tellurite glass(TeO2-ZnO-Na2O) prepared using the conventional melt-quenching method is modified by introducing the SiO2,and its effects on the thermal stability of glass host and the 1.53 μm band spectroscopic properties of Er3+ are investigated by measuring the absorption spectra,1.53 μm band fluorescence spectra,Raman spectra and differential scanning calorimeter(DSC) curves.It is found that for Er3+-doped tellurite glass,besides improving its thermal stability,introducing SiO2 is helpful for the further improvement of the fluorescence full width at half maximum(FWHM) and bandwidth quality factor.The results indicate that the prepared Er3+-doped tellurite glass containing an appropriate amount of SiO2 has good prospect as a candidate of gain medium applied for 1.53 μm broadband amplifier.
文摘The SiO2 films was firstly implanted by 120 keV C-ions at room temperature (RT) and then irradiated at RT with 4.57 MeV/u Pb ions. The implantation was performed on 200 kV Heavy Ion Implanter (IMP, Lanzhou) to the dose ranging from 2.0×10^17C/cm^2 to 8.6×10^17C/cm^2,The irradiation was performed at CARIL-GANIL,Caen,France to the fluence ranging from 5.0×10^11Pb/cm^2 to 3.8×10^12Pb/cm^2.Some parameters were given in Table 1(TRIM 96 calculation)。
文摘SiO2 films were firstly implanted by 120 keV C-ions at room temperature (RT) and then irradiated at RT with 1.75 GeV Xe ions. The implantation was performed on 200 kV Heavy Ion Implanter (IMP, Lanzhou) to a dose in the range from 5.0×1016 to 8.6×1017 C/cm2. The Xe ion irradiation was carried out at HIRFL (Lanzhou) and the irradiation fluence was 5.0×1011 Xe/cm2. The new chemical bonds formed in the samples were investigated by use of micro-FTIR spectroscopy. Some parameters were given in Table 1.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFC0204300)the National High Technology Research and Development Program of China (No. 2015AA034603)+2 种基金the National Natural Science Foundation of China (Nos. 21333003 and 21571061)the "Shu Guang" Project of the Shanghai Municipal Education Commission (No. 12SG29)the Commission of Science and Technology of Shanghai Municipality (No. 15DZ1205305)
文摘The selective catalytic reduction of NOV with NH3 (NH3-SCR) is a very effective technology to control the emission of NOA, and the thermal stability of NH3-SCR catalyst is very important for removal of NOV from diesel engines. In this work, V2O5/WO3-TiO2 (VWT) and SiO2- doped V2O5/WO3-TiO2 (VWTSi10)) catalysts were prepared by impregnation method and characterized by Brunauer- Emmett-Teller (BET), X-ray diffraction (XRD), Raman, temperature programmed reduction by hydrogen (H2-TPR), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption by ammonia (NH3- TPD). The doping of SiO2 promotes the thermal stability of V2O5/WO3-TiO? for NH3-SCR significantly. After calcination at 650 °C for 50 h, the operation window of 10% SiO2-doped V2O5/WO3-TiO2 is 220-480 °C, while the maximum NOV conversion on V2O5/WO3-TiO2 is about 77%. The presenee of SiO2 obviously blocks the transformation of TiO2 from anatase to rutile and stabilizes the dispersion of VOv and WO3 on the surface. It is available for the existence of V44 and the amount of surface acid sites increases, which inhabits the NH3 oxidation at the high temperature range and promotes NH3-SCR activity.
基金Project supported by the National Natural Science Foundation of China(51872207,51672192)。
文摘In this work,Eu^(3+)-doped CsPbCl_(2)Br_(1) in borosilicate glass was successfully synthesized by the melt quenching annealing technique and crystallization method.This work reports a novel Eu^(3+)-doped CsPbCl_(2)Br_(1) perovskite quantum dots(QDs)glass with high sensitivity for optical temperature sensing.The relation of fluorescence intensity ratio(FIR)with the temperature was studied in the temperature range of 80-440 K.Notably,the maximum absolute temperature sensitivity(Sa)and relative temperature sensitivity(Sr)of Eu^(3+)-doped CsPbCl_(2)Br_(1) perovskite QDs glass can reach as high as 0.0315 K-1 and3.097%/K,respectively.Meanwhile,Eu^(3+)-doped CsPbCl_(2)Br_(1) QDs glass demonstrates good water resistance,excellent thermal and cold cycling stability performance,The Eu^(3+)-doped QDs glass materials can bring inspiration to the future exploration of rare earth ion-doped QDs glass material on the application of optical temperature sensing in the future.