Silica( SiO_2) based aerogel/xerogel materials have been received ever-growing attentions for versatile applications. However,the widespread applications are narrowed by the inert properties,fragile and brittle nature...Silica( SiO_2) based aerogel/xerogel materials have been received ever-growing attentions for versatile applications. However,the widespread applications are narrowed by the inert properties,fragile and brittle natureof silica materials and cumbersome preparation processes. In this paper,titania( TiO_2) was introduced into SiO_2 matrix to form photocatalytic hybrid gels. The TiO_2/SiO_2 composites were then reinforced by the impregnation of various fibrillary reinforcements,such as glass,mullite mineral and ceramic fibers. The properties of the composites were studied systematically in terms of fiberstability,microstructure,chemical interaction and thermal conductivity. The final xerogel composites displayed improved monolithic geometry,satisfied thermal conductivity(0. 09-0. 25 W·m^(-1)·K^(-1)) and optimized photocatalytic performance(85% removal of model pollutant of methyl orange( Mo)),which could be expected to be a feasible route to multi-functional building facades in the future.展开更多
The dynamic wetting of water spreading on TiO 2 and TiO 2 SiO 2 films prepared by sol gel method and subsequently treated by air plasma and UV irradiation was investigated. Water completely spread on TiO 2 surface wit...The dynamic wetting of water spreading on TiO 2 and TiO 2 SiO 2 films prepared by sol gel method and subsequently treated by air plasma and UV irradiation was investigated. Water completely spread on TiO 2 surface within 3 s and its dynamic contact angles can be expressed by a power law θ d= k(t+a) -n with the n value 0.98. Less than 50%(molar fraction) SiO 2 addition can accelerate the dynamic water spreading rate on the TiO 2 SiO 2 films and the optimum molar fraction of SiO 2 amount corresponding to as annealed, air plasma, and UV irradiation treatment process is 15%, 10% and 20%, respectively.展开更多
基金National Natural Science Foundations of China(Nos.51308079,51408073,51678080,51678081)
文摘Silica( SiO_2) based aerogel/xerogel materials have been received ever-growing attentions for versatile applications. However,the widespread applications are narrowed by the inert properties,fragile and brittle natureof silica materials and cumbersome preparation processes. In this paper,titania( TiO_2) was introduced into SiO_2 matrix to form photocatalytic hybrid gels. The TiO_2/SiO_2 composites were then reinforced by the impregnation of various fibrillary reinforcements,such as glass,mullite mineral and ceramic fibers. The properties of the composites were studied systematically in terms of fiberstability,microstructure,chemical interaction and thermal conductivity. The final xerogel composites displayed improved monolithic geometry,satisfied thermal conductivity(0. 09-0. 25 W·m^(-1)·K^(-1)) and optimized photocatalytic performance(85% removal of model pollutant of methyl orange( Mo)),which could be expected to be a feasible route to multi-functional building facades in the future.
文摘The dynamic wetting of water spreading on TiO 2 and TiO 2 SiO 2 films prepared by sol gel method and subsequently treated by air plasma and UV irradiation was investigated. Water completely spread on TiO 2 surface within 3 s and its dynamic contact angles can be expressed by a power law θ d= k(t+a) -n with the n value 0.98. Less than 50%(molar fraction) SiO 2 addition can accelerate the dynamic water spreading rate on the TiO 2 SiO 2 films and the optimum molar fraction of SiO 2 amount corresponding to as annealed, air plasma, and UV irradiation treatment process is 15%, 10% and 20%, respectively.