期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Coupling of ultrasmall and small CoxP nanoparticles confined in porous SiO2 matrix for a robust oxygen evolution reaction 被引量:7
1
作者 Xiaojun Zeng Haiqi Zhang +4 位作者 Xiaofeng Zhang Qingqing Zhang Yunxia Chen Ronghai Yu Martin Moskovits 《Nano Materials Science》 EI CAS CSCD 2022年第4期393-399,共7页
Rational design of electrocatalysts is important for a sustainable oxygen evolution reaction(OER).It is still a huge challenge to engineer active sites in multi-sizes and multi-components simultaneously.Here,a series ... Rational design of electrocatalysts is important for a sustainable oxygen evolution reaction(OER).It is still a huge challenge to engineer active sites in multi-sizes and multi-components simultaneously.Here,a series of CoxP nanoparticles(NPs)confined in an SiO2matrix(SiO2/CoxP)is designed and synthesized as OER electrocatalysts.The phosphorization of the hydrolyzed Co-phyllosilicate promotes the formation of ultrasmall and small Co2P and CoP.These are firmly confined in the SiO2matrix.The coupling of multi-size and multi-component CoxP catalysts can regulate reaction kinetics and electron transfer ability,enrich the active sites,and eventually promote the intrinsic OER activity.The SiO2matrix provides abundant porous structure and oxygen vacancies,and these facilitate the exposure of active sites and improve conductivity.Because of the synergy and interplay of multisized/component CoxP NPs and the porous SiO2matrix,the unique SiO2/CoxP heterostructure exhibits low overpotential(293 m V@10 mA cm-2),and robust stability(decay 12 mV after 5000 CV cycles,97.4%of initial current after 100 h chronoamperometric)for the OER process,exceeding many advanced metal phosphide electrocatalysts.This work provides a novel tactic to design low-cost,simple,and highly efficient OER electrocatalysts. 展开更多
关键词 Multi-size MULTI-COMPONENT PHYLLOSILICATE sio2/coxp heterostructure OER
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部