A new convenient calcium cyanamide (CaCN2) reduction route was developed to synthesize the Eu^2+ activated Ca-α-SiAION phosphors containing low oxygen content. The luminescence properties of the obtained products ...A new convenient calcium cyanamide (CaCN2) reduction route was developed to synthesize the Eu^2+ activated Ca-α-SiAION phosphors containing low oxygen content. The luminescence properties of the obtained products were investigated for white LEDs application. The critical Eu^2+ concentration in various hosts and its effect on the photoluminescence properties were studied. The optimized sample (10at.% Eu^2+ vs. Ca^2+) could be efficiently excited by the current GaN/InGaN blue LED chips and provided emission intensity competitive with that of YAG:Ce^3+ (P46-Y3) standard, revealing that this phosphor was a potential candidate for phosphor-converted white LEDs.展开更多
基金a Grant-in-Aid for the Scientific Research (No16080210) on Priority Areas (440) from the Ministry of Education, Culture, Sports, Science and Technology of Japan
文摘A new convenient calcium cyanamide (CaCN2) reduction route was developed to synthesize the Eu^2+ activated Ca-α-SiAION phosphors containing low oxygen content. The luminescence properties of the obtained products were investigated for white LEDs application. The critical Eu^2+ concentration in various hosts and its effect on the photoluminescence properties were studied. The optimized sample (10at.% Eu^2+ vs. Ca^2+) could be efficiently excited by the current GaN/InGaN blue LED chips and provided emission intensity competitive with that of YAG:Ce^3+ (P46-Y3) standard, revealing that this phosphor was a potential candidate for phosphor-converted white LEDs.