采用全矢量交替方向隐含迭代方法系统分析了高折射率 Si ON薄膜对 Si基 Si O2 阵列波导光栅中波导应力双折射的影响 .分析结果表明在芯区上或下表面沉积 Si ON薄膜可以明显减小 Si基 Si O2 阵列波导光栅 (AWG)中波导的应力双折射 ,但这...采用全矢量交替方向隐含迭代方法系统分析了高折射率 Si ON薄膜对 Si基 Si O2 阵列波导光栅中波导应力双折射的影响 .分析结果表明在芯区上或下表面沉积 Si ON薄膜可以明显减小 Si基 Si O2 阵列波导光栅 (AWG)中波导的应力双折射 ,但这两种补偿方法容易使模场偏移中心位置 ,不利于波导与光纤的耦合 .理想的补偿方法是在芯区上下同时补偿 ,可减小模场偏移 ,并用该方法设计了偏振无关的 1 6通道 AWG.展开更多
Mo(CO)6 adsorption on the clean, oxygen-precovered and deeply oxidized Si(lll) surfaces was comparatively investigated by high-resolution electron energy loss spectroscopy. The downward vibrational frequency shift...Mo(CO)6 adsorption on the clean, oxygen-precovered and deeply oxidized Si(lll) surfaces was comparatively investigated by high-resolution electron energy loss spectroscopy. The downward vibrational frequency shift of the C-O stretching mode in adsorbed Mo(CO)6 illustrates that different interactions of adsorbed Mo(CO)6 occur on clean Si(111) and SiO2/Si(111) surfaces, weak on the former and strong on the latter. The strong interaction on SiO2/Si(111) might lead to the partial dissociation of Mo(CO)6, consequently the formation of molybdenum subcarbonyls. Therefore, employing Mo(CO)6 as the precursor, metallic molybdenum could be successfully deposited on the SiO2/Si(111) surface but not on the clean Si(111) surface. A portion of the deposited metallic molybdenum is transformed into the MoOa on the SiO2/Si(111) surface upon heating, and the evolved MoO3 finally desorbs from the substrate upon annealing at elevated temperatures.展开更多
文摘Mo(CO)6 adsorption on the clean, oxygen-precovered and deeply oxidized Si(lll) surfaces was comparatively investigated by high-resolution electron energy loss spectroscopy. The downward vibrational frequency shift of the C-O stretching mode in adsorbed Mo(CO)6 illustrates that different interactions of adsorbed Mo(CO)6 occur on clean Si(111) and SiO2/Si(111) surfaces, weak on the former and strong on the latter. The strong interaction on SiO2/Si(111) might lead to the partial dissociation of Mo(CO)6, consequently the formation of molybdenum subcarbonyls. Therefore, employing Mo(CO)6 as the precursor, metallic molybdenum could be successfully deposited on the SiO2/Si(111) surface but not on the clean Si(111) surface. A portion of the deposited metallic molybdenum is transformed into the MoOa on the SiO2/Si(111) surface upon heating, and the evolved MoO3 finally desorbs from the substrate upon annealing at elevated temperatures.