期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
From sand to fast and stable silicon anode:Synthesis of hollow Si@void@C yolk-shell microspheres by aluminothermic reduction for lithium storage 被引量:3
1
作者 Zhengwei Zhou Long Pan +2 位作者 Yitao Liu Xiaodong Zhu Xuming Xie 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第3期610-617,共8页
As an alloying type anode material, silicon is a promising alternative of graphitic carbon due to its high theoretical capacity and natural abundance. Developing an industrially viable silicon anode, however, is still... As an alloying type anode material, silicon is a promising alternative of graphitic carbon due to its high theoretical capacity and natural abundance. Developing an industrially viable silicon anode, however, is still a huge challenge because of several problems: First of all, the common process to synthesize a silicon anode is complicated, costly, and energy-intensive. Besides, the huge volume expansion, inevitable side reactions with the electrolyte, and low intrinsic conductivity of silicon are eventually responsible for the poor cyclability and unsatisfactory rate capability. Herein, we aim to address these issues by proposing synthesis of hollow Si@void@C yolk-shell microspheres from sand by low-temperature aluminothermic reduction, which energetically combines a cost-effective silicon source with an energy-efficient, highyield methodology. The hollow Si@void@C yolk-shell microspheres effectively accommodate the diffusion-induced stress by providing the hollow interior and the void space. Moreover, the carbon shell not only functions as an electrolyte-blocking layer to protect the silicon yolk from undesirable side reactions and SEI formation, but also acts as a conductive framework to reduce the resistance to electron and Li^+ ion transport. Benefiting from these synergistic effects, the hollow Si@void@C yolk-shell microspheres exhibit superior long-term cyclability and rate capability. 展开更多
关键词 Sand Anode Lithium storage Aluminothermic reduction si@void@c yolk-shell MICROSPHERES
原文传递
锂离子电池Si@void@C复合材料的制备及其电化学性能 被引量:3
2
作者 蔡建信 李志鹏 +3 位作者 李巍 赵鹏飞 杨震宇 吁霁 《无机化学学报》 SCIE CAS CSCD 北大核心 2017年第10期1763-1768,共6页
以纳米Si颗粒为核心,正硅酸四乙酯(TEOS)为SiO_2源,采用Stober法在Si表面包覆一层SiO_2,再以多巴胺为碳源,通过碳化处理将SiO_2表面的聚多巴胺层转化成碳层。最后,用HF刻蚀SiO_2并留下空隙,得到Si@void@C复合纳米颗粒。利用X射线衍射、... 以纳米Si颗粒为核心,正硅酸四乙酯(TEOS)为SiO_2源,采用Stober法在Si表面包覆一层SiO_2,再以多巴胺为碳源,通过碳化处理将SiO_2表面的聚多巴胺层转化成碳层。最后,用HF刻蚀SiO_2并留下空隙,得到Si@void@C复合纳米颗粒。利用X射线衍射、扫描电镜、透射电镜和恒流充放电测试对材料的物相、微观形貌和电化学性能进行表征。结果表明,在0.1 A·g^(-1)电流密度下,Si@void@C负极材料充放电循环100次后充电比容量仍然有1 319.5 mAh·g^(-1),容量保持率为78.4%,表现出优异的电化学性能。 展开更多
关键词 碳包覆 si@void@c负极材料 锂离子电池
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部