In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically...In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.展开更多
The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,wh...The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution.展开更多
SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microsco...SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and metallurgical microscope. The effects of technical parameters on the properties of the product were analyzed. The results indicate that the composite possesses a dense microstructure, composed of three interpenetrated phases. Of them, SiO2 layer prohibits the powdering of the composites; Mg promotes the wetting and infiltration of the system and Si restricts the interfacial reaction while improving the wetting ability between reinforcement and matrix.展开更多
Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, ...Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, coefficient of thermal expansion and flexural strength. The effects of the Si content on microstructure and thermal and mechanical properties of the composites were studied. The results show that the Si/Al composites consist of Si and Al components and Al uniformly distributes among Si grains. The relative density of the Si/Al composites gradually increases with the decrease of Si content and reaches 98.0% when the Si content is 50%. The thermal conductivity, the coefficient of thermal expansion and the flexural strength of the composite all decrease with the increase of the Si content, and an optimal matching of them is obtained when the Si content is 60%(volume fraction).展开更多
The hydrogen permeation resistance of Si–Zr(SZ) and Si–Al(SA) composite sol oxide coating on zirconium hydride blocks(Zr H) was studied. SZ and SA composite sol were prepared by sol–gel method. SZ and SA composite ...The hydrogen permeation resistance of Si–Zr(SZ) and Si–Al(SA) composite sol oxide coating on zirconium hydride blocks(Zr H) was studied. SZ and SA composite sol were prepared by sol–gel method. SZ and SA composite oxide coatings were prepared on the surface of Zr H(in situ oxidized or not) in turns by dip-coating and heat treatment. Hydrogen permeation of Zr Hwith and without composite oxide coating was compared.Hydrogen desorption experiments in thermal vacuum show that hydrogen permeation resistance of SA composite oxide coating is better than that of SZ, to a certain extent,which could decrease hydrogen thermal loss. Experimental results in the working condition show that the SA composite oxide coating can not only prevent hydrogen permeation, but also retard contact and reaction between COand Zr Hmatrix, which could mitigate excessive oxidation of in situ oxide film. Differential scanning calorimetry and thermogravimetry(DSC–TG) analysis was performed to investigate the decomposition behavior of SA and SZ liquid sol in heat treatment process. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analysis were employed to characterize the phase composition,surface and cross-section morphology of the coatings.展开更多
The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, bo...The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, both primary and eutectic Mg2Si in the Al-18 wt% Mg2Si composite are well modified. The morphology of primary Mg2Si is changed from irregular or dendritic to polyhedral shape, and its average particle size is signifi- cantly decreased. Moreover, the morphology of the eutectic MgzSi phase is altered from flake-like to very short fibrous or dot-like. The wear rates and friction coefficient of the composites with Nd are lower than those without Nd. Furthermore, the addition of 0.5 wt% Nd changes the wear mechanism of the composite from the combination of abrasive, adhesive, and delamination wear without Nd into a single mild abrasion wear with 0.5 wt% Nd.展开更多
This work investigated the microstructure evolution, tensile, impact, hardness, and sliding wear properties of an Al–20Mg2Si–2Cu in situ composite treated with different Bi contents. The desired modification of prim...This work investigated the microstructure evolution, tensile, impact, hardness, and sliding wear properties of an Al–20Mg2Si–2Cu in situ composite treated with different Bi contents. The desired modification of primary Mg2 Si particles was achieved with the addition of 0.4 wt% Bi. Increasing Bi beyond 0.4 wt%resulted in a loss of modification, possibly due to the formation of Al8 MgB iS i4 compound before the precipitation of the primary Mg2 Si. Additionally, the structure of the pseudo-eutectic Mg2 Si was transformed from plate to fibrous, which was consistent with decrease of growth temperature extracted from the cooling curve thermal analysis. Addition of Bi had an effect on the morphology of Al5 Fe Si(β), Al2Cu(θ) and Al5Cu2Mg8Si6(Q) intermetallic compounds. The tensile strength, elongation percentage, impact toughness, and hardness increased by 6%, 13%, 75%, and 23%, respectively, due to modification of both the primary and eutectic Mg2 Si crystals. The tensile and impact fracture surfaces showed fewer decohered particles in the Bi-treated composite. The enhancement in wear resistance of the Bi-treated composite could be attributed to solid lubricant function of insoluble soft Bi phase and modification effects on Mg2 Si particles.展开更多
In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex sit...In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in AI matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/AI composites were investigated by using scanning electron microscopy (SEM) and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 pm to 30 μm. The size of primary AI dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS) was observed in the presence of SiC particles.展开更多
Silicon/aluminum(Si/Al)composite is a kind of lightweight electronic packaging material that received a lot of attention in the past 20 years.In this paper,a series of Si/Al composites with lowered coefficient of ther...Silicon/aluminum(Si/Al)composite is a kind of lightweight electronic packaging material that received a lot of attention in the past 20 years.In this paper,a series of Si/Al composites with lowered coefficient of thermal expansion(CTE)and high thermal conductivity were produced by powder metallurgy(PM).The Si/Al composites are fully dense and have fine Si particles uniquely distributed within pure Al matrix.Three 50%Si/Al composites were designed to have strength in the range of 185-290 MPa to meet different demands,while the other properties keep invariable.Fracture toughness of the composites is measured to be 9-10 MPa·m^(1/2).The composites were machined to 50%Si/Al housings and 27%Si/Al lids.Both the hermeticities of housings before and after laser-beam-welding sealing are determined.The measured leak rate of composites and sealed housings is in magnitude order of 1×10^(-10)and 1×10^(-9)Pa·m^(3)·s^(-1),respectively,suggesting high hermeticity.The good hermeticity is attributed to the full dense materials,good weldability,and extremely low weld porosity.The present Si/Al composites are expected to be extensively used in highly hermetic electronic packages.展开更多
In-situ 2 vol.%TiB2 particle reinforced Al−xSi−0.3Mg(x=7,9,12,15 wt.%)composites were prepared by the salt−metal reaction,and the microstructures and mechanical properties were investigated.The results show that the T...In-situ 2 vol.%TiB2 particle reinforced Al−xSi−0.3Mg(x=7,9,12,15 wt.%)composites were prepared by the salt−metal reaction,and the microstructures and mechanical properties were investigated.The results show that the TiB2 particles with a diameter of 20−80 nm and the eutectic Si with a length of 1−10μm are the main strengthening phases in the TiB2/Al−xSi−0.3Mg composites.The TiB2 particles promote grain refinement and modify the eutectic Si from needle-like to short-rod shape.However,the strengthening effect of TiB2 particles is weakened as the Si content exceeds the eutectic composition,which can be attributed to the formation of large and irregular primary Si.The axial tensile test results and fractography observations indicate that these composites show more brittle fracture characteristics than the corresponding alloy matrixes.展开更多
The effects of mixed rare earth oxides and CaCO3 on the microstructure of an in-situ Mg2Si/Al-Si hypereutectic alloy composite were investigated by optical microscope,scanning electron microscope,and energy dispersive...The effects of mixed rare earth oxides and CaCO3 on the microstructure of an in-situ Mg2Si/Al-Si hypereutectic alloy composite were investigated by optical microscope,scanning electron microscope,and energy dispersive spectrum analysis. The results showed that the morphol-ogy of the primary Mg2Si phase particles changed from irregular or crosses to polygonal shape,their sizes decreased from 75 μm to about 25 μm,and the compound of both the oxide and CaCO3 was better than either the single mixed rare earth o...展开更多
Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed an...Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed and the effects of the used process factors on these characteristics were analyzed. The results of observations shows that, in thickness, the components possess microstructures accumulating lots of Mg2Si particles and a portion of primary silicon particles in the inner layer, a little MgzSi and primary silicon particles in the outer layer, and without any Mg2Si and primary silicon particle in the middle layer. The results of the analysis indicate that the rotation rate of centrifugal casting, mould temperature, and melt pouring temperature have evidently affected the accumulation of the second phase particles. Also, the higher the centrifugal rotation rate, mould temperature, and melt pouring temperature are, the more evident in the inner layer the degree of accumulation of Mg2Si and primary silicon particles is.展开更多
Al-Si metal matrix composites (MMCs) reinforced with 20 vol.% alumina-silicate shot fibers (Al2O3-SiO2(sf)) were fabricated by an infiltration squeeze method. Pure Pr metal was added into these composites. The effect ...Al-Si metal matrix composites (MMCs) reinforced with 20 vol.% alumina-silicate shot fibers (Al2O3-SiO2(sf)) were fabricated by an infiltration squeeze method. Pure Pr metal was added into these composites. The effect of Pr addition on the microstructure evolution of Al-Si MMCs was investigated by SEM,TEM,and EDS. Pr addition is favorable to make uniform microstructures with the modified eutectic Si crystal. PrAlSi phase with high contents of Pr and Si is observed on the interface between the fiber and the m...展开更多
基金the supports provided by the National Natural Science Foundation of China(Nos.52075198 and 52271102)the China Postdoctoral Science Foundation(No.2021M691112)+1 种基金the State Key Lab of Advanced Metals and Materials(No.2021-ZD07)the Analytical and Testing Center,HUST。
文摘In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.
基金Project (60776019) supported by the National Natural Science Foundation of ChinaProject (61-TP-2010) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU),China
文摘The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution.
基金National Natural Science Foundation of China (50372037)Scientific Research Foundations of Shaanxi University of Science and Technology (SUST-B14)
文摘SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and metallurgical microscope. The effects of technical parameters on the properties of the product were analyzed. The results indicate that the composite possesses a dense microstructure, composed of three interpenetrated phases. Of them, SiO2 layer prohibits the powdering of the composites; Mg promotes the wetting and infiltration of the system and Si restricts the interfacial reaction while improving the wetting ability between reinforcement and matrix.
基金Project (51374039) supported by the National Natural Science Foundation of ChinaProject (613135) supported by National Security Basic Research Program of China
文摘Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, coefficient of thermal expansion and flexural strength. The effects of the Si content on microstructure and thermal and mechanical properties of the composites were studied. The results show that the Si/Al composites consist of Si and Al components and Al uniformly distributes among Si grains. The relative density of the Si/Al composites gradually increases with the decrease of Si content and reaches 98.0% when the Si content is 50%. The thermal conductivity, the coefficient of thermal expansion and the flexural strength of the composite all decrease with the increase of the Si content, and an optimal matching of them is obtained when the Si content is 60%(volume fraction).
基金financially supported by the National Natural Science Foundation of China (No. 51404034)
文摘The hydrogen permeation resistance of Si–Zr(SZ) and Si–Al(SA) composite sol oxide coating on zirconium hydride blocks(Zr H) was studied. SZ and SA composite sol were prepared by sol–gel method. SZ and SA composite oxide coatings were prepared on the surface of Zr H(in situ oxidized or not) in turns by dip-coating and heat treatment. Hydrogen permeation of Zr Hwith and without composite oxide coating was compared.Hydrogen desorption experiments in thermal vacuum show that hydrogen permeation resistance of SA composite oxide coating is better than that of SZ, to a certain extent,which could decrease hydrogen thermal loss. Experimental results in the working condition show that the SA composite oxide coating can not only prevent hydrogen permeation, but also retard contact and reaction between COand Zr Hmatrix, which could mitigate excessive oxidation of in situ oxide film. Differential scanning calorimetry and thermogravimetry(DSC–TG) analysis was performed to investigate the decomposition behavior of SA and SZ liquid sol in heat treatment process. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analysis were employed to characterize the phase composition,surface and cross-section morphology of the coatings.
基金financially supported by the National Natural Youth Science Foundation of China (No. 50901038)the Key Laboratory Foundation of Liaoning Provincial Committee of Education (Nos. 20060394 and 2009S053)
文摘The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, both primary and eutectic Mg2Si in the Al-18 wt% Mg2Si composite are well modified. The morphology of primary Mg2Si is changed from irregular or dendritic to polyhedral shape, and its average particle size is signifi- cantly decreased. Moreover, the morphology of the eutectic MgzSi phase is altered from flake-like to very short fibrous or dot-like. The wear rates and friction coefficient of the composites with Nd are lower than those without Nd. Furthermore, the addition of 0.5 wt% Nd changes the wear mechanism of the composite from the combination of abrasive, adhesive, and delamination wear without Nd into a single mild abrasion wear with 0.5 wt% Nd.
文摘This work investigated the microstructure evolution, tensile, impact, hardness, and sliding wear properties of an Al–20Mg2Si–2Cu in situ composite treated with different Bi contents. The desired modification of primary Mg2 Si particles was achieved with the addition of 0.4 wt% Bi. Increasing Bi beyond 0.4 wt%resulted in a loss of modification, possibly due to the formation of Al8 MgB iS i4 compound before the precipitation of the primary Mg2 Si. Additionally, the structure of the pseudo-eutectic Mg2 Si was transformed from plate to fibrous, which was consistent with decrease of growth temperature extracted from the cooling curve thermal analysis. Addition of Bi had an effect on the morphology of Al5 Fe Si(β), Al2Cu(θ) and Al5Cu2Mg8Si6(Q) intermetallic compounds. The tensile strength, elongation percentage, impact toughness, and hardness increased by 6%, 13%, 75%, and 23%, respectively, due to modification of both the primary and eutectic Mg2 Si crystals. The tensile and impact fracture surfaces showed fewer decohered particles in the Bi-treated composite. The enhancement in wear resistance of the Bi-treated composite could be attributed to solid lubricant function of insoluble soft Bi phase and modification effects on Mg2 Si particles.
基金supported by the National Natural Science Foundation of China(No.50671044)the Sci-tech Development Project of Jilin Province of China(No.20070506)
文摘In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in AI matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/AI composites were investigated by using scanning electron microscopy (SEM) and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 pm to 30 μm. The size of primary AI dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS) was observed in the presence of SiC particles.
基金the National Basic Research Program of China(No.2012CB619600)。
文摘Silicon/aluminum(Si/Al)composite is a kind of lightweight electronic packaging material that received a lot of attention in the past 20 years.In this paper,a series of Si/Al composites with lowered coefficient of thermal expansion(CTE)and high thermal conductivity were produced by powder metallurgy(PM).The Si/Al composites are fully dense and have fine Si particles uniquely distributed within pure Al matrix.Three 50%Si/Al composites were designed to have strength in the range of 185-290 MPa to meet different demands,while the other properties keep invariable.Fracture toughness of the composites is measured to be 9-10 MPa·m^(1/2).The composites were machined to 50%Si/Al housings and 27%Si/Al lids.Both the hermeticities of housings before and after laser-beam-welding sealing are determined.The measured leak rate of composites and sealed housings is in magnitude order of 1×10^(-10)and 1×10^(-9)Pa·m^(3)·s^(-1),respectively,suggesting high hermeticity.The good hermeticity is attributed to the full dense materials,good weldability,and extremely low weld porosity.The present Si/Al composites are expected to be extensively used in highly hermetic electronic packages.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51804349)the China Postdoctoral Science Foundation(2018M632986)the Natural Science Foundation of Hunan Province,China(2019JJ50766).
文摘In-situ 2 vol.%TiB2 particle reinforced Al−xSi−0.3Mg(x=7,9,12,15 wt.%)composites were prepared by the salt−metal reaction,and the microstructures and mechanical properties were investigated.The results show that the TiB2 particles with a diameter of 20−80 nm and the eutectic Si with a length of 1−10μm are the main strengthening phases in the TiB2/Al−xSi−0.3Mg composites.The TiB2 particles promote grain refinement and modify the eutectic Si from needle-like to short-rod shape.However,the strengthening effect of TiB2 particles is weakened as the Si content exceeds the eutectic composition,which can be attributed to the formation of large and irregular primary Si.The axial tensile test results and fractography observations indicate that these composites show more brittle fracture characteristics than the corresponding alloy matrixes.
基金the Natural Science Foundation of Jiangxi Province (No. 0650047)the Science and Technology Program of the Education Department of Jiangxi Province,China(No.GJJ08268).
文摘The effects of mixed rare earth oxides and CaCO3 on the microstructure of an in-situ Mg2Si/Al-Si hypereutectic alloy composite were investigated by optical microscope,scanning electron microscope,and energy dispersive spectrum analysis. The results showed that the morphol-ogy of the primary Mg2Si phase particles changed from irregular or crosses to polygonal shape,their sizes decreased from 75 μm to about 25 μm,and the compound of both the oxide and CaCO3 was better than either the single mixed rare earth o...
文摘Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed and the effects of the used process factors on these characteristics were analyzed. The results of observations shows that, in thickness, the components possess microstructures accumulating lots of Mg2Si particles and a portion of primary silicon particles in the inner layer, a little MgzSi and primary silicon particles in the outer layer, and without any Mg2Si and primary silicon particle in the middle layer. The results of the analysis indicate that the rotation rate of centrifugal casting, mould temperature, and melt pouring temperature have evidently affected the accumulation of the second phase particles. Also, the higher the centrifugal rotation rate, mould temperature, and melt pouring temperature are, the more evident in the inner layer the degree of accumulation of Mg2Si and primary silicon particles is.
文摘Al-Si metal matrix composites (MMCs) reinforced with 20 vol.% alumina-silicate shot fibers (Al2O3-SiO2(sf)) were fabricated by an infiltration squeeze method. Pure Pr metal was added into these composites. The effect of Pr addition on the microstructure evolution of Al-Si MMCs was investigated by SEM,TEM,and EDS. Pr addition is favorable to make uniform microstructures with the modified eutectic Si crystal. PrAlSi phase with high contents of Pr and Si is observed on the interface between the fiber and the m...