Lithium-sulfur(Li-S) batteries and lithium-selenium(Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific capacities and high energy densities,have become the hotspo...Lithium-sulfur(Li-S) batteries and lithium-selenium(Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific capacities and high energy densities,have become the hotspots of current researches.Besides,elemental S(Se) raw materials are widely sourced and their production costs are both low,which make them considered one of the new generations of high energy density electrochemical energy storage systems with the most potential for development.However,poor conductivity of elemental S/Se and the notorious "shuttle effect" of lithium polysulfides(polyselenides) severely hinder the commercialization of Li-S/Se batteries.Thanks to the excellent electrical conductivity and strong absorption of lithium polysulfide(polyselenide) about electronically conducting polymer,some of the above thorny problems have been effectively alleviated.The review presents the fundamental studies and current development trends of common electronically conducting polymers in various components of Li-S/Se batteries,which involves polyaniline(PANI) polypyrrole(PPy),and polythiophene(PTh) with its derivatives,e.g.polyethoxythiophene(PEDOT) and poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS).Finally,the review not only summarizes the research directions and challenges facing the application of electronically conducting polymers,but also looks forward to the development prospects of them,which will provide a way for the practical use of electronically conducting polymers in Li-S/Se batteries with outstanding electrochemical properties in the short run.展开更多
Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natu...Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs.展开更多
基金the National Natural Science Foundation of China(51973157)the Special Grade of the Financial Support from the China Postdoctoral Science Foundation(2020T130469)+1 种基金the China Postdoctoral Science Foundation Grant(2019 M651047)the Science and Technology Plans of Tianjin(19PTSYJC00010)for their financial support。
文摘Lithium-sulfur(Li-S) batteries and lithium-selenium(Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific capacities and high energy densities,have become the hotspots of current researches.Besides,elemental S(Se) raw materials are widely sourced and their production costs are both low,which make them considered one of the new generations of high energy density electrochemical energy storage systems with the most potential for development.However,poor conductivity of elemental S/Se and the notorious "shuttle effect" of lithium polysulfides(polyselenides) severely hinder the commercialization of Li-S/Se batteries.Thanks to the excellent electrical conductivity and strong absorption of lithium polysulfide(polyselenide) about electronically conducting polymer,some of the above thorny problems have been effectively alleviated.The review presents the fundamental studies and current development trends of common electronically conducting polymers in various components of Li-S/Se batteries,which involves polyaniline(PANI) polypyrrole(PPy),and polythiophene(PTh) with its derivatives,e.g.polyethoxythiophene(PEDOT) and poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS).Finally,the review not only summarizes the research directions and challenges facing the application of electronically conducting polymers,but also looks forward to the development prospects of them,which will provide a way for the practical use of electronically conducting polymers in Li-S/Se batteries with outstanding electrochemical properties in the short run.
基金supported by the National Natural Science Foundation of China (52203066,51973157,61904123)the Tianjin Natural Science Foundation (18JCQNJC02900)+3 种基金National innovation and entrepreneurship training program for college students (202310058007)Tianjin Municipal college students’innovation and entrepreneurship training program (202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education (Grant No.2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs.