针对轻量级模型在光刻热点检测中特征提取能力不足的问题,提出以改进重排网络第2版(shuffle net version 2,ShuffleNetV2)为主干网络,引入多尺度双重注意力(multi-scale dual attention,MSDA)模块,同时融合梯度协调机制(gradient harmon...针对轻量级模型在光刻热点检测中特征提取能力不足的问题,提出以改进重排网络第2版(shuffle net version 2,ShuffleNetV2)为主干网络,引入多尺度双重注意力(multi-scale dual attention,MSDA)模块,同时融合梯度协调机制(gradient harmonizing mechanism,GHM)和基于度量学习思想的加性角度边距(additive angular margin,AAM)的光刻热点检测模型——ShuffleNetV2-MSDA-GHM-AAM(SMGA)。该模型提升了对不同尺度上下文信息的建模与感知能力,优化了特征嵌入空间的类间判别性,缓解了数据集的不平衡。在2012年国际计算机辅助设计会议(2012 international conference on computer-aided design,ICCAD 2012)数据集上进行实验,结果显示,SMGA模型在保持98.22%的较高检测召回率的同时,平均误报数量降低到484个。该模型为实现集成电路设计阶段的高效、低成本光刻热点检测提供了可行方案,具有重要的工程应用价值和推广前景。展开更多
布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级...布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级模型的花色布匹瑕疵检测方法并将其部署在嵌入式设备Raspberry Pi 4B上.首先在一阶段目标检测网络YOLO的基础上用轻量级特征提取网络ShuffleNetV2提取花色布匹瑕疵的特征,以减少网络结构复杂度及参数量,提升检测速度;其次是检测头的解耦合,将分类与定位任务分离,以提升模型收敛速度;此外引入CIoU作为瑕疵位置回归损失函数,提高瑕疵定位准确性.实验结果表明,本文算法在Raspberry Pi 4B上可达8.6 FPS的检测速度,可满足纺织工业应用需求.展开更多
文摘针对轻量级模型在光刻热点检测中特征提取能力不足的问题,提出以改进重排网络第2版(shuffle net version 2,ShuffleNetV2)为主干网络,引入多尺度双重注意力(multi-scale dual attention,MSDA)模块,同时融合梯度协调机制(gradient harmonizing mechanism,GHM)和基于度量学习思想的加性角度边距(additive angular margin,AAM)的光刻热点检测模型——ShuffleNetV2-MSDA-GHM-AAM(SMGA)。该模型提升了对不同尺度上下文信息的建模与感知能力,优化了特征嵌入空间的类间判别性,缓解了数据集的不平衡。在2012年国际计算机辅助设计会议(2012 international conference on computer-aided design,ICCAD 2012)数据集上进行实验,结果显示,SMGA模型在保持98.22%的较高检测召回率的同时,平均误报数量降低到484个。该模型为实现集成电路设计阶段的高效、低成本光刻热点检测提供了可行方案,具有重要的工程应用价值和推广前景。
文摘布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级模型的花色布匹瑕疵检测方法并将其部署在嵌入式设备Raspberry Pi 4B上.首先在一阶段目标检测网络YOLO的基础上用轻量级特征提取网络ShuffleNetV2提取花色布匹瑕疵的特征,以减少网络结构复杂度及参数量,提升检测速度;其次是检测头的解耦合,将分类与定位任务分离,以提升模型收敛速度;此外引入CIoU作为瑕疵位置回归损失函数,提高瑕疵定位准确性.实验结果表明,本文算法在Raspberry Pi 4B上可达8.6 FPS的检测速度,可满足纺织工业应用需求.