目的:为解决人脸口罩识别中边缘和移动端设备存储与计算资源受限的问题,提出一种基于YOLOv5轻量化网络的人脸口罩识别方法。方法:选取由主干网络(Backbone)、颈部模块(Neck)和头部模块(Head)组成的YOLOv5模型作为基础框架。首先,使用Shu...目的:为解决人脸口罩识别中边缘和移动端设备存储与计算资源受限的问题,提出一种基于YOLOv5轻量化网络的人脸口罩识别方法。方法:选取由主干网络(Backbone)、颈部模块(Neck)和头部模块(Head)组成的YOLOv5模型作为基础框架。首先,使用ShuffleNetv2轻量化网络对Backbone部分进行修改替换;其次,在Neck部分引入Ghost模块和C3_S模块;最后,为提升检测精度,融入卷积块注意力模块(convolutional block attention module,CBAM),形成Shuffle_Yolo_GS_CBAM模型。选用AIZOO数据集训练和验证模型,通过平均精度均值(mean average precision,mAP)、每秒传输帧数(frames per second,FPS)、每秒10亿次的浮点运算数(giga floating-point operations per second,GFLOPS)和参数量评估模型对人脸口罩的识别效果。结果:该模型识别人脸口罩的mAP为89.5%,FPS为158.7帧/s,参数量和GFLOPS分别为2.38 M和4.5 GFLOPS。与YOLOv5s相比,虽然检测精度略有下降,但检测速度提升了39.7%,模型参数量减少了67.3%,模型运算量减少了73.8%。结论:提出的方法在提高检测速度、减少参数量和计算量、保障检测精度方面表现良好,适合部署在边缘和移动端设备上进行人脸口罩识别。展开更多
针对现有的柑橘检测算法准确率低、模型参数量大、检测实时性差、不适用移动采摘设备等问题,提出一种基于改进轻量模型YOLO-DoC的柑橘检测方法。引入Bottleneck结构的ShuffleNetV2网络作为YOLOv5骨干网络模型,构造轻量化网络。同时加入...针对现有的柑橘检测算法准确率低、模型参数量大、检测实时性差、不适用移动采摘设备等问题,提出一种基于改进轻量模型YOLO-DoC的柑橘检测方法。引入Bottleneck结构的ShuffleNetV2网络作为YOLOv5骨干网络模型,构造轻量化网络。同时加入无参型SimAM注意力机制提高复杂环境下对目标的识别精度。为了提高检测网络对于目标果实的边界框定位精度,通过引入Alpha-IoU边界框回归损失函数的方法来获取目标的边界框。实验显示,YOLO-DoC模型的P(precision)值和mAP(mean average precision)值分别为98.8%和99.1%,参数量缩减为YOLOv5网络的1/7,模型的大小为2.8 MB。改进后的模型相比于原网络模型具有识别速度快、定位准度高以及占用内存少的优势,在满足精准采摘工作要求的前提下可以提高采摘效率。展开更多
文摘目的:为解决人脸口罩识别中边缘和移动端设备存储与计算资源受限的问题,提出一种基于YOLOv5轻量化网络的人脸口罩识别方法。方法:选取由主干网络(Backbone)、颈部模块(Neck)和头部模块(Head)组成的YOLOv5模型作为基础框架。首先,使用ShuffleNetv2轻量化网络对Backbone部分进行修改替换;其次,在Neck部分引入Ghost模块和C3_S模块;最后,为提升检测精度,融入卷积块注意力模块(convolutional block attention module,CBAM),形成Shuffle_Yolo_GS_CBAM模型。选用AIZOO数据集训练和验证模型,通过平均精度均值(mean average precision,mAP)、每秒传输帧数(frames per second,FPS)、每秒10亿次的浮点运算数(giga floating-point operations per second,GFLOPS)和参数量评估模型对人脸口罩的识别效果。结果:该模型识别人脸口罩的mAP为89.5%,FPS为158.7帧/s,参数量和GFLOPS分别为2.38 M和4.5 GFLOPS。与YOLOv5s相比,虽然检测精度略有下降,但检测速度提升了39.7%,模型参数量减少了67.3%,模型运算量减少了73.8%。结论:提出的方法在提高检测速度、减少参数量和计算量、保障检测精度方面表现良好,适合部署在边缘和移动端设备上进行人脸口罩识别。
文摘针对现有的柑橘检测算法准确率低、模型参数量大、检测实时性差、不适用移动采摘设备等问题,提出一种基于改进轻量模型YOLO-DoC的柑橘检测方法。引入Bottleneck结构的ShuffleNetV2网络作为YOLOv5骨干网络模型,构造轻量化网络。同时加入无参型SimAM注意力机制提高复杂环境下对目标的识别精度。为了提高检测网络对于目标果实的边界框定位精度,通过引入Alpha-IoU边界框回归损失函数的方法来获取目标的边界框。实验显示,YOLO-DoC模型的P(precision)值和mAP(mean average precision)值分别为98.8%和99.1%,参数量缩减为YOLOv5网络的1/7,模型的大小为2.8 MB。改进后的模型相比于原网络模型具有识别速度快、定位准度高以及占用内存少的优势,在满足精准采摘工作要求的前提下可以提高采摘效率。