In medical imaging, particularly for analyzing brain tumor MRIs, the expertise of skilled neurosurgeons or radiologists is often essential. However, many developing countries face a significant shortage of these speci...In medical imaging, particularly for analyzing brain tumor MRIs, the expertise of skilled neurosurgeons or radiologists is often essential. However, many developing countries face a significant shortage of these specialists, which impedes the accurate identification and analysis of tumors. This shortage exacerbates the challenge of delivering precise and timely diagnoses and delays the production of comprehensive MRI reports. Such delays can critically affect treatment outcomes, especially for conditions requiring immediate intervention, potentially leading to higher mortality rates. In this study, we introduced an adapted convolutional neural network designed to automate brain tumor diagnosis. Our model features fewer layers, each optimized with carefully selected hyperparameters. As a result, it significantly reduced both execution time and memory usage compared to other models. Specifically, its execution time was 10 times shorter than that of the referenced models, and its memory consumption was 3 times lower than that of ResNet. In terms of accuracy, our model outperformed all other architectures presented in the study, except for ResNet, which showed similar performance with an accuracy of around 90%.展开更多
针对微表情运动的局限性和识别效果不理想的问题,提出了一种结合双注意力模块和ShuffleNet模型的微表情识别方法。该方法将提取的峰值帧的水平和垂直光流图,以通道叠加的方式连接送进所设计的网络进行训练。利用高效且轻量化的ShuffleNe...针对微表情运动的局限性和识别效果不理想的问题,提出了一种结合双注意力模块和ShuffleNet模型的微表情识别方法。该方法将提取的峰值帧的水平和垂直光流图,以通道叠加的方式连接送进所设计的网络进行训练。利用高效且轻量化的ShuffleNet模型堆叠的卷积神经网络(Convolutional neural network,CNN),极大地降低了训练的参数量,在ShuffleNet网络中加入可自适应特征细化的双注意力模块,使得网络在通道和空间维度寻找微表情运动的有用特征信息。在通道注意力模块中,使用一维卷积融合全局池化后的一维通道特征来保持相邻通道的相关性;在空间注意力模块中,采用较小的3×3和5×5卷积核提取不同的空间信息并融合。实验结果表明,在微表情识别方面,相比于基准方法的三个正交平面的局部二值模式(Local binary patterns from three orthogonal planes,LBP-TOP),未加权F1值(Unweighted F1-score,UF1)和未加权平均召回率(Unweighted average recall,UAR)分别提高了0.1445和0.1556,识别性能有很大的提升。展开更多
针对煤矿井下对行人检测精度不足、实时性要求高、环境条件差、行人状态复杂等问题,提出一种改进的FCOS煤矿井下行人检测算法。该模型使用轻量级卷积神经网络ShuffleNet V2替换FCOS检测算法中的骨干网络ResNet-50,将原始网络中的特征金...针对煤矿井下对行人检测精度不足、实时性要求高、环境条件差、行人状态复杂等问题,提出一种改进的FCOS煤矿井下行人检测算法。该模型使用轻量级卷积神经网络ShuffleNet V2替换FCOS检测算法中的骨干网络ResNet-50,将原始网络中的特征金字塔结构改进为自上而下和自下而上的路径增强网络,同时利用由两组深度可分离卷积组成的轻量化检测头替换原始FCOS网络的检测头。在试验训练过程中,通过对井下行人检测数据进行尺度和颜色等数据增强来提升模型的泛化能力与鲁棒性。试验结果显示,改进的FCOS可以更好地实现检测精度与速度之间的平衡,该算法在基本不损失精度的情况下,平均精度均值(mean Average Precision)达51.9%,检测速度可以达到100帧/s。展开更多
文摘In medical imaging, particularly for analyzing brain tumor MRIs, the expertise of skilled neurosurgeons or radiologists is often essential. However, many developing countries face a significant shortage of these specialists, which impedes the accurate identification and analysis of tumors. This shortage exacerbates the challenge of delivering precise and timely diagnoses and delays the production of comprehensive MRI reports. Such delays can critically affect treatment outcomes, especially for conditions requiring immediate intervention, potentially leading to higher mortality rates. In this study, we introduced an adapted convolutional neural network designed to automate brain tumor diagnosis. Our model features fewer layers, each optimized with carefully selected hyperparameters. As a result, it significantly reduced both execution time and memory usage compared to other models. Specifically, its execution time was 10 times shorter than that of the referenced models, and its memory consumption was 3 times lower than that of ResNet. In terms of accuracy, our model outperformed all other architectures presented in the study, except for ResNet, which showed similar performance with an accuracy of around 90%.
文摘针对微表情运动的局限性和识别效果不理想的问题,提出了一种结合双注意力模块和ShuffleNet模型的微表情识别方法。该方法将提取的峰值帧的水平和垂直光流图,以通道叠加的方式连接送进所设计的网络进行训练。利用高效且轻量化的ShuffleNet模型堆叠的卷积神经网络(Convolutional neural network,CNN),极大地降低了训练的参数量,在ShuffleNet网络中加入可自适应特征细化的双注意力模块,使得网络在通道和空间维度寻找微表情运动的有用特征信息。在通道注意力模块中,使用一维卷积融合全局池化后的一维通道特征来保持相邻通道的相关性;在空间注意力模块中,采用较小的3×3和5×5卷积核提取不同的空间信息并融合。实验结果表明,在微表情识别方面,相比于基准方法的三个正交平面的局部二值模式(Local binary patterns from three orthogonal planes,LBP-TOP),未加权F1值(Unweighted F1-score,UF1)和未加权平均召回率(Unweighted average recall,UAR)分别提高了0.1445和0.1556,识别性能有很大的提升。
文摘针对煤矿井下对行人检测精度不足、实时性要求高、环境条件差、行人状态复杂等问题,提出一种改进的FCOS煤矿井下行人检测算法。该模型使用轻量级卷积神经网络ShuffleNet V2替换FCOS检测算法中的骨干网络ResNet-50,将原始网络中的特征金字塔结构改进为自上而下和自下而上的路径增强网络,同时利用由两组深度可分离卷积组成的轻量化检测头替换原始FCOS网络的检测头。在试验训练过程中,通过对井下行人检测数据进行尺度和颜色等数据增强来提升模型的泛化能力与鲁棒性。试验结果显示,改进的FCOS可以更好地实现检测精度与速度之间的平衡,该算法在基本不损失精度的情况下,平均精度均值(mean Average Precision)达51.9%,检测速度可以达到100帧/s。