期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
1
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
基于自适应模态分解和融合双尺度注意力机制的时间卷积网络的超短期风电功率预测
2
作者 谢智锋 张展 +3 位作者 曾颖 许炫淙 于慧 孟安波 《黑龙江电力》 CAS 2024年第6期478-485,490,共9页
针对风电功率强波动性限制预测精度的问题,提出一种基于自适应变分模态(adaptive variational mode decomposition,AVMD)和融合双尺度注意力(double-scale attention,DA)的时间卷积神经网络(temporal convolutional network,TCN)的超短... 针对风电功率强波动性限制预测精度的问题,提出一种基于自适应变分模态(adaptive variational mode decomposition,AVMD)和融合双尺度注意力(double-scale attention,DA)的时间卷积神经网络(temporal convolutional network,TCN)的超短期风电功率预测模型AVMD-DATCN。采用纵横交叉(crisscross optimization,CSO)算法对变分模态分解参数进行优化,提出动态混合熵(dynamic mixing entropy,DME)作为适应度函数以兼顾分解损失和分解子序列可预测性,将风电功率自适应分解为一系列稳定有序的子分量。针对各分量建立DATCN预测模型以充分挖掘潜在深层耦合非连续时序特征,将各分量预测值叠加重构得到最终预测结果。多角度对比实验结果表明,所提出模型的预测性能显著优于其他预测方法。 展开更多
关键词 超短期风电功率预测 变分模态分解 纵横交叉算法 动态混合熵 双尺度注意力 时间卷积网络
在线阅读 下载PDF
基于风电功率预测的电网调度优化控制研究 被引量:2
3
作者 谢毅 《电力学报》 2013年第3期186-190,共5页
近年来,由于山西电网风电装机不断翻番,大规模风电并网后对电力系统调峰造成一定程度的压力。电力系统运行既要充分利用风力发电产生的清洁电源,又要保证其他常规电源的安全稳定。传统的调度运行技术不考虑短期和超短期的风电功率预测,... 近年来,由于山西电网风电装机不断翻番,大规模风电并网后对电力系统调峰造成一定程度的压力。电力系统运行既要充分利用风力发电产生的清洁电源,又要保证其他常规电源的安全稳定。传统的调度运行技术不考虑短期和超短期的风电功率预测,通过分析风功率预测与调度关系,然后重点阐述了如何通过超短期风功率预测来协调风电与常规电源的运行,最后通过整数规划将风电场优化控制作为落脚点,从而保证了电网安全、稳定、经济的优化运行,进一步加大电网对清洁能源的消纳。 展开更多
关键词 电网调度 超短期功率预测 整数规划 优化控制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部