The reactor pressure vessel(RPV)is susceptible to brittle fracture due to the influence of ion irradiation and high temperature,which presents a significant risk to the safe operation of nuclear reactors.It has been d...The reactor pressure vessel(RPV)is susceptible to brittle fracture due to the influence of ion irradiation and high temperature,which presents a significant risk to the safe operation of nuclear reactors.It has been demonstrated that pulsed electric current can effectively address the issue of embrittlement in RPV steel.However,the relationship between pulse parameters(duty ratio,frequency,current,and time)and the effectiveness of pulse current processing has not been systematically studied.The application of machine learning methods enables autonomous exploration and learning of the relationship between data.Consequently,this study proposes a machine learning method based on the random forest model to establish the relationship between the parameters of electrical pulses and the repair effect of RPV steel.A generative adversarial network is employed to enhance data diversity and scalability,while a particle swarm optimization algorithm is utilized to optimize the initialization weights and biases of the random forest model,aiming to improve the model’s fitting ability and training performance.The results indicate that the coefficient of determination R-square(R^(2)),root mean squared error and mean absolute error values are 0.934,0.045,and 0.036,respectively,suggesting that the model has the potential to predict the performance recovery of RPV steel after pulsed electric field treatment.The prediction of the impact of pulse current parameters on the repair effect will help to enhance and optimize the repair process,thereby providing a scientific basis for pulse current repair processing.展开更多
Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified M...Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified MPC for dual three-phase permanent magnet synchronous motor(DTPPMSM).The novelty of this method is the decomposition of prediction function and the switching optimization algorithm.Based on the decomposition of prediction function,the current increment vector is obtained,which is employed to select the optimal voltage vector and calculate the duty cycle.Then,the computation burden can be reduced and the current tracking performance can be maintained.Additionally,the switching optimization algorithm was proposed to optimize the voltage vector action sequence,which results in lower switching frequency.Hence,this control strategy can not only reduce the computation burden and switching frequency,but also maintain the steady-state and dynamic performance.The simulation and experimental results are presented to verify the feasibility of the proposed strategy.展开更多
BACKGROUND Arthritis is a prevalent and debilitating condition that affects a significant proportion of middle-aged and older adults worldwide.Characterized by chronic pain,inflammation,and joint dysfunction,arthritis...BACKGROUND Arthritis is a prevalent and debilitating condition that affects a significant proportion of middle-aged and older adults worldwide.Characterized by chronic pain,inflammation,and joint dysfunction,arthritis can severely impact physical function,quality of life,and mental health.The overall burden of arthritis is further compounded in this population due to its frequent association with depression.As the global population both the prevalence and severity of arthritis are anticipated to increase.AIM To investigate depressive symptoms in the middle-aged and elderly arthritic population in China,a risk prediction model was constructed,and its effectiveness was validated.METHODS Using the China Health and Retirement Longitudinal Study 2018 data on middleaged and elderly arthritic individuals,the population was randomly divided into a training set(n=4349)and a validation set(n=1862)at a 7:3 ratio.Based on 10-fold cross-validation,least absolute shrinkage and selection regression was used to screen the model for the best predictor variables.Logistic regression was used to construct the nomogram model.Subject receiver operating characteristic and calibration curves were used to determine model differentiation and accuracy.Decision curve analysis was used to assess the net clinical benefit.RESULTS The prevalence of depressive symptoms in the middle-aged and elderly arthritis population in China was 47.1%,multifactorial logistic regression analyses revealed that gender,age,number of chronic diseases,number of pain sites,nighttime sleep time,education,audiological status,health status,and place of residence were all predictors of depressive symptoms.The area under the curve values for the training and validation sets were 0.740(95%confidence interval:0.726-0.755)and 0.731(95%confidence interval:0.709-0.754),respectively,indicating good model differentiation.The calibration curves demonstrated good prediction accuracy,and the decision curve analysis curves demonstrated good clinical utility.CONCLUSION The risk prediction model developed in this study has strong predictive performance and is useful for screening and assessing depression symptoms in middle-aged and elderly arthritis patients.展开更多
An error back propagation (BP) neural network prediction model was established for the shunt current compensation in series resistance spot welding. The input variables for the neural network consist of the resistiv...An error back propagation (BP) neural network prediction model was established for the shunt current compensation in series resistance spot welding. The input variables for the neural network consist of the resistivity of the material, the thickness of workpiece and the spot spacing, and the shunt rate is outputted. A simplified calculation for the shunt rate was presented based on the feature of the constant-current resistance spot welding and the variation of the resistance in resistance spot welding process, and then the data generated by simplified calculation were used to train and adjust the neural network model. The neural network model proposed was used to predict the shunt rate in the spot welding of 20# mlid steel (in Chinese classification) (in 2. 0 mm thickness) and 10# mild steel (in 1.5 mm and 1.0 mm thickness). The maximum relative prediction errors are, respectively, 2. 83%, 1.77% and 3.67%. Shunt current compensation experiments were peoCormed based on the neural network prediction model proposed to check the diameter difference of nuggets. Experimental results show that maximum nugget diameter deviation is less than 4% for both 10# and 20# mlid steels with spot spacing of 30 mm and 50 mm.展开更多
Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current prediction.Moreover,the complex temporal and spatial variability o...Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current prediction.Moreover,the complex temporal and spatial variability of ocean currents also makes the prediction methods based on time series data challenging.The deep network model can automatically learn and extract complex features hidden in large amount of complex data,so it is a promising method for high quality prediction of ocean currents.In this paper,we propose a spatiotemporal coupled attention deep network model STCANet that can extract abundant temporal and spatial coupling information on the behavior characteristics of ocean currents for improving the prediction accuracy.Firstly,Spatial Module is designed and implemented to extract the spatiotemporal coupling characteristics of ocean currents,and meanwhile the spatial correlations and dependencies among adjacent sea areas are obtained through Spatial Channel Attention Module(SCAM).Secondly,we use the GatedRecurrent-Unit(GRU)to extract temporal relationships of ocean currents,and design and implement the nearest neighbor time attention module to extract the interdependences of ocean currents between adjacent times,which can further improve the accuracy of ocean current prediction.Finally,a series of comparative experiments on the MediSea_Dataset and EastSea_Dataset showed that the prediction quality of our model greatly outperforms those of other benchmark models such as History Average(HA),Autoregressive Integrated Moving Average Model(ARIMA),Long Short-term Memory(LSTM),Gate Recurrent Unit(GRU)and CNN_GRU.展开更多
A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in t...A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in transient-state,while lessening the computational burden and improving the control performance in steady-state.The timescale characteristics of different parts of MPCC,such as signal sampling,prediction calculation,control output,model error correction,are analyzed,and the algorithm architecture of MPCC with multi-timescale is proposed.The difference between reference and actual speed,and the change rate of actual speed are utilized to discriminate the transient state of speed change and load change,respectively.Adaptive-adjusting method of control period and prediction stepsize are illustrated in detail after operation condition discrimination.Experimental results of a PMSM are presented to validate the effectiveness of proposed MPCC.In addition,comparative evaluation of single-step MPCC with fixed timescale and proposed MPCC is conducted,which demonstrates the superiority of proposed control strategy.展开更多
This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present app...This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present approach,the hydrodynamic parameters were designed based on the Froude similitude criteria.To avoid the cohesive behavior,we scaled the sediment size based on the settling velocity similarity,i.e.,the suspended load similarity.Then,a series of different scale model tests was conducted to obtain the scour depth around the pile in combined waves and currents.The fitting formula of scour depth from the small-scale model tests was used to predict the results of large-scale tests.The accuracy of the present approach was validated by comparing the prediction values with experimental data of large-scale tests.Moreover,the correctness and accuracy of the present approach for foundations with complex shapes,e.g.,the tripod foundation,was further checked.The results indicated that the fitting line from small-scale model tests slightly overestimated the experimental data of large-scale model tests,and the errors can be accepted.In general,the present approach was applied to predict the maximum or equilibrium scour depth of the large-scale model tests around single piles and tripods.展开更多
The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and compli...The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and complicate the heatsink design.This paper proposes a novel hybrid model predictive control method for MMCs.This method utilizes an indirect structure MPC and a sorting algorithm to implement current tracking and capacitor voltages balancing,considerably resulting in reduced calculation burden.In addition,different from the conventional MPC solutions,we add a simple proportional-integral(PI)controller to suppress circulating current through modifying the submodule(SM)inserted number,which is parallel to the MPC loop.This hybrid control solution combines both advantages of MPC and linear control,evidently resulting in improved performance of circulating current.Finally,the MATLAB/Simulink results of an 11-level MMC system verify the effectiveness of the proposed solution.展开更多
For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting ...For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting in the inability to balance the system robustness and dynamic performance.A PMSM optimal control strategy combining linear active disturbance rejection control(LADRC)and two-vector MPCC(TV-MPCC)is proposed.Firstly,a mathematical model of a PMSM is presented,and the PMSM TV-MPCC model is developed in the synchronous rotation coordinate system.Secondly,a first-order LADRC controller composed of a linear extended state observer and linear state error feedback is designed to reduce the complexity of parameter tuning while linearly simplifying the traditional active disturbance rejection control(ADRC)structure.Finally,the conventional PI speed regulator in the motor speed control system is replaced by the designed LADRC controller.The simulation results show that the speed control system using LADRC can effectively deal with the changes in motor parameters and has better robustness and dynamic performance than PI control and similar methods.The system has a fast motor speed response,small overshoot,strong anti-interference,and no steady-state error,and the total harmonic distortion is reduced.展开更多
A global fast terminal sliding mode(GFTSM)-based model predictive torque control(MPTC)strategy is developed for permanent magnet synchronous motor(PMSM)drive system with only one phase current sensor.Generally two pha...A global fast terminal sliding mode(GFTSM)-based model predictive torque control(MPTC)strategy is developed for permanent magnet synchronous motor(PMSM)drive system with only one phase current sensor.Generally two phase-current sensors are indispensable for MPTC.In response to only one phase current sensor available and the change of stator resistance,a novel adaptive observer for estimating the remaining two phase currents and time-varying stator resistance is proposed to perform MPTC.Moreover,in view of the variation of system parameters and external disturbance,a new GFTSM-based speed regulator is synthesized to enhance the drive system robustness.In this paper,the GFTSM,based on sliding mode theory,employs the fast terminal sliding mode in both the reaching stage and the sliding stage.The resultant GFTSM-based MPTC PMSM drive system with single phase current sensor has excellent dynamical performance which is very close to the GFTSM-based MPTC PMSM drive system with two-phase current sensors.On the other hand,compared with proportional-integral(PI)-based and sliding mode(SM)-based MPTC PMSM drive systems,it possesses better dynamical response and stronger robustness as well as smaller total harmonic distortion(THD)index of three-phase stator currents in the presence of variation of load torque.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by ...Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a t...This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.展开更多
Experiment was carried out to simulate different loading level elements under coupling of stray current and 5% chlorine salt solution. When calculating corrosion of reinforcement, the influence of loading should be co...Experiment was carried out to simulate different loading level elements under coupling of stray current and 5% chlorine salt solution. When calculating corrosion of reinforcement, the influence of loading should be considered based on the first law of Faraday electrolysis. The current density of the corrosion was measured by the linear polarization resistance method. The function of corrosion current density was obtained by nonlinear fitting method, and the influence coefficient of loading level to electrochemical equivalent was obtained base on the function of corrosion current density. The experimental results show that the corrosion current density increases with stress ratio of concrete structures. The reinforcement corrosion weight can be calculated through the influence coefficients of electrochemical equivalent and the result is in line with the actual situation.展开更多
Injection of high-Z impurities into plasma has been proved to be able to reduce the localized thermal load and mechanical forces on the in-vessel components and the vacuum vessel, caused by disruptions in Tokamaks. An...Injection of high-Z impurities into plasma has been proved to be able to reduce the localized thermal load and mechanical forces on the in-vessel components and the vacuum vessel, caused by disruptions in Tokamaks. An advanced prediction and mitigation system of disruption is implemented in HL-2A to safely shut down plasmas by using the laser ablation of high-Z impurities with a perturbation real-time measuring and processing system. The injection is usually triggered by the amplitude and frequency of the MHD perturbation field which is detected with a Mirnov coil and leads to the onset of a mitigated disruption within a few milliseconds. It could be a simple and potential approach to significantly reducing the plasma thermal energy and magnetic energy before a disruption, thereby achieving safe plasma termination. The plasma response to impurity injection, a mechanism for improving plasma thermal and current quench in major disruptions, the design of the disruption prediction warner, and an evaluation of the mitigation success rate are discussed in the present paper.展开更多
The recent studies on Artificial Intelligence(AI)accompanied by enhanced computing capabilities supports increasing attention into traditional control methods coupled with AI learning methods in an attempt to bringing...The recent studies on Artificial Intelligence(AI)accompanied by enhanced computing capabilities supports increasing attention into traditional control methods coupled with AI learning methods in an attempt to bringing adap-tiveness and fast responding features.The Model Predictive Control(MPC)tech-nique is a widely used,safe and reliable control method based on constraints.On the other hand,the Eddy Current dynamometers are highly nonlinear braking sys-tems whose performance parameters are related to many processes related vari-ables.This study is based on an adaptive model predictive control that utilizes selected AI methods.The presented approach presents an updated the mathema-tical model of an Eddy Current Dynamometer based on experimentally obtained system operational data.Finally,the comparison of AI methods and related learn-ing performances based on the assessment technique of mean absolute percentage error(MAPE)issues are discussed.The results indicate that Single Hidden Layer Neural Network(SHLNN),General Regression Neural Network(GRNN),Radial Basis Network(RBNN),Neuro Fuzzy Network(ANFIS)coupled MPC have quite satisfying performances.The presented results indicate that,amongst them,GRNN appears to provide the best performance.展开更多
Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the ...Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments.展开更多
To improve the dynamic performance of conventional deadbeat predictive current control(DPCC)under parameter mismatch,especially eliminate the current overshoot and oscillation during torque mutation,it is necessary to...To improve the dynamic performance of conventional deadbeat predictive current control(DPCC)under parameter mismatch,especially eliminate the current overshoot and oscillation during torque mutation,it is necessary to enhance the robustness of DPCC against various working conditions.However,the disturbance from parameter mismatch can deteriorate the dynamic performance.To deal with the above problem,firstly,traditional DPCC and the parameter sensitivity of DPCC are introduced and analyzed.Secondly,an extended state observer(ESO)combined with DPCC method is proposed,which can observe and suppress the disturbance due to various parameter mismatch.Thirdly,to improve the accuracy and stability of ESO,an adaptive extended state observer(AESO)using fuzzy controller based on ESO,is presented,and combined with DPCC method.The improved DPCC-AESO can switch the value of gain coefficients with fuzzy control,accelerating the current response speed and avoid the overshoot and oscillation,which improves the robustness and stability performance of SPMSM.Finally,the three methods,as well as conventional DPCC method,DPCC-ESO method,DPCC-AESO method,are comparatively analyzed in this paper.The effectiveness of the proposed two methods are verified by simulation and experimental results.展开更多
The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid sp...The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order to further improve dynamic behavior. It compensates the load torque influence on the speed control setting a feed forward torque reference value. The benefits are twice; the speed controller reaches the speed reference value without offsets which would need to be compensated by an integrator and a better response to load torque variations is obtained since they are detected and compensated leading to small speed variations. Moreover, the influence of pararneter errors and disturbances has been analyzed and limited so that they play a minor role in operation.展开更多
In this paper, a new predictive control strategy for current source matrix converter (CSMC) is presented. Proposed predictive control strategy allows for creating output voltages with boost type voltage transfer ratio...In this paper, a new predictive control strategy for current source matrix converter (CSMC) is presented. Proposed predictive control strategy allows for creating output voltages with boost type voltage transfer ratio and desired frequency. The description of predictive control circuit of the CSMC is presented. Furthermore the simulation test results to confirm functionality of the proposed control strategy and converter properties under this strategy are shown.展开更多
基金financially supported by the National Natural Science Foundation of China(U21B2082,52474410)the National Key R&D Program of China(2023YFB3709903,2020 YFA0714900)+5 种基金the Key R&D Program of Shandong Province,China(2023CXGC010406)the Scientific Research Special Project for First-Class Disciplines in Inner Mongolia Autonomous Region(YLXKZXNKD-001)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(2024ZD06)the Technology Support Project for the Construction of Major Innovation Platforms in Inner Mongolia Autonomous Region(XM2024XTGXQ16)the Beijing Municipal Natural Science Foundation(2222065)the Fundamental Research Funds for the Central Universities(FRF-TP-22-02C2).
文摘The reactor pressure vessel(RPV)is susceptible to brittle fracture due to the influence of ion irradiation and high temperature,which presents a significant risk to the safe operation of nuclear reactors.It has been demonstrated that pulsed electric current can effectively address the issue of embrittlement in RPV steel.However,the relationship between pulse parameters(duty ratio,frequency,current,and time)and the effectiveness of pulse current processing has not been systematically studied.The application of machine learning methods enables autonomous exploration and learning of the relationship between data.Consequently,this study proposes a machine learning method based on the random forest model to establish the relationship between the parameters of electrical pulses and the repair effect of RPV steel.A generative adversarial network is employed to enhance data diversity and scalability,while a particle swarm optimization algorithm is utilized to optimize the initialization weights and biases of the random forest model,aiming to improve the model’s fitting ability and training performance.The results indicate that the coefficient of determination R-square(R^(2)),root mean squared error and mean absolute error values are 0.934,0.045,and 0.036,respectively,suggesting that the model has the potential to predict the performance recovery of RPV steel after pulsed electric field treatment.The prediction of the impact of pulse current parameters on the repair effect will help to enhance and optimize the repair process,thereby providing a scientific basis for pulse current repair processing.
基金supported by the National Natural Science Foundation of China under Grant 5227705。
文摘Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified MPC for dual three-phase permanent magnet synchronous motor(DTPPMSM).The novelty of this method is the decomposition of prediction function and the switching optimization algorithm.Based on the decomposition of prediction function,the current increment vector is obtained,which is employed to select the optimal voltage vector and calculate the duty cycle.Then,the computation burden can be reduced and the current tracking performance can be maintained.Additionally,the switching optimization algorithm was proposed to optimize the voltage vector action sequence,which results in lower switching frequency.Hence,this control strategy can not only reduce the computation burden and switching frequency,but also maintain the steady-state and dynamic performance.The simulation and experimental results are presented to verify the feasibility of the proposed strategy.
基金Supported by the Changning District Health Committee Excellent Innovation Talent Training Project,No.RCJD2022S01.
文摘BACKGROUND Arthritis is a prevalent and debilitating condition that affects a significant proportion of middle-aged and older adults worldwide.Characterized by chronic pain,inflammation,and joint dysfunction,arthritis can severely impact physical function,quality of life,and mental health.The overall burden of arthritis is further compounded in this population due to its frequent association with depression.As the global population both the prevalence and severity of arthritis are anticipated to increase.AIM To investigate depressive symptoms in the middle-aged and elderly arthritic population in China,a risk prediction model was constructed,and its effectiveness was validated.METHODS Using the China Health and Retirement Longitudinal Study 2018 data on middleaged and elderly arthritic individuals,the population was randomly divided into a training set(n=4349)and a validation set(n=1862)at a 7:3 ratio.Based on 10-fold cross-validation,least absolute shrinkage and selection regression was used to screen the model for the best predictor variables.Logistic regression was used to construct the nomogram model.Subject receiver operating characteristic and calibration curves were used to determine model differentiation and accuracy.Decision curve analysis was used to assess the net clinical benefit.RESULTS The prevalence of depressive symptoms in the middle-aged and elderly arthritis population in China was 47.1%,multifactorial logistic regression analyses revealed that gender,age,number of chronic diseases,number of pain sites,nighttime sleep time,education,audiological status,health status,and place of residence were all predictors of depressive symptoms.The area under the curve values for the training and validation sets were 0.740(95%confidence interval:0.726-0.755)and 0.731(95%confidence interval:0.709-0.754),respectively,indicating good model differentiation.The calibration curves demonstrated good prediction accuracy,and the decision curve analysis curves demonstrated good clinical utility.CONCLUSION The risk prediction model developed in this study has strong predictive performance and is useful for screening and assessing depression symptoms in middle-aged and elderly arthritis patients.
基金Acknowledgements The authors would like to thank for the financial support from the National Natural Science Foundation of China through document 51275418. The authors would also like to acknowledge professor Yang Siqian for providing discussion of the results for this study.
文摘An error back propagation (BP) neural network prediction model was established for the shunt current compensation in series resistance spot welding. The input variables for the neural network consist of the resistivity of the material, the thickness of workpiece and the spot spacing, and the shunt rate is outputted. A simplified calculation for the shunt rate was presented based on the feature of the constant-current resistance spot welding and the variation of the resistance in resistance spot welding process, and then the data generated by simplified calculation were used to train and adjust the neural network model. The neural network model proposed was used to predict the shunt rate in the spot welding of 20# mlid steel (in Chinese classification) (in 2. 0 mm thickness) and 10# mild steel (in 1.5 mm and 1.0 mm thickness). The maximum relative prediction errors are, respectively, 2. 83%, 1.77% and 3.67%. Shunt current compensation experiments were peoCormed based on the neural network prediction model proposed to check the diameter difference of nuggets. Experimental results show that maximum nugget diameter deviation is less than 4% for both 10# and 20# mlid steels with spot spacing of 30 mm and 50 mm.
基金The authors would like to thank the financial support from the National Key Research and Development Program of China(Nos.2020YFE0201200,2019YFC1509100)the partial support by the Youth Program of Natural Science Foundation of China(No.41706010)the Fundamental Research Funds for the Central Universities(No.202264002).
文摘Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current prediction.Moreover,the complex temporal and spatial variability of ocean currents also makes the prediction methods based on time series data challenging.The deep network model can automatically learn and extract complex features hidden in large amount of complex data,so it is a promising method for high quality prediction of ocean currents.In this paper,we propose a spatiotemporal coupled attention deep network model STCANet that can extract abundant temporal and spatial coupling information on the behavior characteristics of ocean currents for improving the prediction accuracy.Firstly,Spatial Module is designed and implemented to extract the spatiotemporal coupling characteristics of ocean currents,and meanwhile the spatial correlations and dependencies among adjacent sea areas are obtained through Spatial Channel Attention Module(SCAM).Secondly,we use the GatedRecurrent-Unit(GRU)to extract temporal relationships of ocean currents,and design and implement the nearest neighbor time attention module to extract the interdependences of ocean currents between adjacent times,which can further improve the accuracy of ocean current prediction.Finally,a series of comparative experiments on the MediSea_Dataset and EastSea_Dataset showed that the prediction quality of our model greatly outperforms those of other benchmark models such as History Average(HA),Autoregressive Integrated Moving Average Model(ARIMA),Long Short-term Memory(LSTM),Gate Recurrent Unit(GRU)and CNN_GRU.
基金supported in part by the National Natural Science Foundation of China under Grant 52077054in part by the Natural Science Foundation of Hebei Province under Grant E2019202092+2 种基金in part by the China Postdoctoral Science Foundation under Grant 2021T140077 and 2020M681446in part by the State Key Laboratory of Reliability and Intelligence of Electrical Equipment under Grant EERI_PI2020002in part by the Funds for Creative Research Groups of Hebei Province under Grant E2020202142.
文摘A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in transient-state,while lessening the computational burden and improving the control performance in steady-state.The timescale characteristics of different parts of MPCC,such as signal sampling,prediction calculation,control output,model error correction,are analyzed,and the algorithm architecture of MPCC with multi-timescale is proposed.The difference between reference and actual speed,and the change rate of actual speed are utilized to discriminate the transient state of speed change and load change,respectively.Adaptive-adjusting method of control period and prediction stepsize are illustrated in detail after operation condition discrimination.Experimental results of a PMSM are presented to validate the effectiveness of proposed MPCC.In addition,comparative evaluation of single-step MPCC with fixed timescale and proposed MPCC is conducted,which demonstrates the superiority of proposed control strategy.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.202061027)the National Natural Science Foundation of China(No.41572247)。
文摘This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present approach,the hydrodynamic parameters were designed based on the Froude similitude criteria.To avoid the cohesive behavior,we scaled the sediment size based on the settling velocity similarity,i.e.,the suspended load similarity.Then,a series of different scale model tests was conducted to obtain the scour depth around the pile in combined waves and currents.The fitting formula of scour depth from the small-scale model tests was used to predict the results of large-scale tests.The accuracy of the present approach was validated by comparing the prediction values with experimental data of large-scale tests.Moreover,the correctness and accuracy of the present approach for foundations with complex shapes,e.g.,the tripod foundation,was further checked.The results indicated that the fitting line from small-scale model tests slightly overestimated the experimental data of large-scale model tests,and the errors can be accepted.In general,the present approach was applied to predict the maximum or equilibrium scour depth of the large-scale model tests around single piles and tripods.
基金This work was partially supported by the National Natural Science Foundation of China(11847104)General Program of National Natural Science Foundation of China(51977124)+2 种基金Shandong Natural Science Foundation(ZR2019QEE001)Natural Science Foundation of Jiangsu Province(BK20190204)National Distinguished Expert(Youth Talent)Program of China(31390089963058)。
文摘The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and complicate the heatsink design.This paper proposes a novel hybrid model predictive control method for MMCs.This method utilizes an indirect structure MPC and a sorting algorithm to implement current tracking and capacitor voltages balancing,considerably resulting in reduced calculation burden.In addition,different from the conventional MPC solutions,we add a simple proportional-integral(PI)controller to suppress circulating current through modifying the submodule(SM)inserted number,which is parallel to the MPC loop.This hybrid control solution combines both advantages of MPC and linear control,evidently resulting in improved performance of circulating current.Finally,the MATLAB/Simulink results of an 11-level MMC system verify the effectiveness of the proposed solution.
文摘For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting in the inability to balance the system robustness and dynamic performance.A PMSM optimal control strategy combining linear active disturbance rejection control(LADRC)and two-vector MPCC(TV-MPCC)is proposed.Firstly,a mathematical model of a PMSM is presented,and the PMSM TV-MPCC model is developed in the synchronous rotation coordinate system.Secondly,a first-order LADRC controller composed of a linear extended state observer and linear state error feedback is designed to reduce the complexity of parameter tuning while linearly simplifying the traditional active disturbance rejection control(ADRC)structure.Finally,the conventional PI speed regulator in the motor speed control system is replaced by the designed LADRC controller.The simulation results show that the speed control system using LADRC can effectively deal with the changes in motor parameters and has better robustness and dynamic performance than PI control and similar methods.The system has a fast motor speed response,small overshoot,strong anti-interference,and no steady-state error,and the total harmonic distortion is reduced.
基金supported by the National Natural Science Foundation of China(61463025).
文摘A global fast terminal sliding mode(GFTSM)-based model predictive torque control(MPTC)strategy is developed for permanent magnet synchronous motor(PMSM)drive system with only one phase current sensor.Generally two phase-current sensors are indispensable for MPTC.In response to only one phase current sensor available and the change of stator resistance,a novel adaptive observer for estimating the remaining two phase currents and time-varying stator resistance is proposed to perform MPTC.Moreover,in view of the variation of system parameters and external disturbance,a new GFTSM-based speed regulator is synthesized to enhance the drive system robustness.In this paper,the GFTSM,based on sliding mode theory,employs the fast terminal sliding mode in both the reaching stage and the sliding stage.The resultant GFTSM-based MPTC PMSM drive system with single phase current sensor has excellent dynamical performance which is very close to the GFTSM-based MPTC PMSM drive system with two-phase current sensors.On the other hand,compared with proportional-integral(PI)-based and sliding mode(SM)-based MPTC PMSM drive systems,it possesses better dynamical response and stronger robustness as well as smaller total harmonic distortion(THD)index of three-phase stator currents in the presence of variation of load torque.The simulation results validate the feasibility and effectiveness of the proposed scheme.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-Technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)。
文摘Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.
基金This work was supported in part by the National Natural Science Foundation of China under 61374125。
文摘This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.
基金Funded by the National Natural Science Foundation of China(No.50808005)the National "11-5" Science and Technology Supporting Program(No.2006BAJ27B04)the Major Program of Beijing Municipal Natural Sci-ence Foundation(No.8100001)and Beijing talent innovation
文摘Experiment was carried out to simulate different loading level elements under coupling of stray current and 5% chlorine salt solution. When calculating corrosion of reinforcement, the influence of loading should be considered based on the first law of Faraday electrolysis. The current density of the corrosion was measured by the linear polarization resistance method. The function of corrosion current density was obtained by nonlinear fitting method, and the influence coefficient of loading level to electrochemical equivalent was obtained base on the function of corrosion current density. The experimental results show that the corrosion current density increases with stress ratio of concrete structures. The reinforcement corrosion weight can be calculated through the influence coefficients of electrochemical equivalent and the result is in line with the actual situation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475023)
文摘Injection of high-Z impurities into plasma has been proved to be able to reduce the localized thermal load and mechanical forces on the in-vessel components and the vacuum vessel, caused by disruptions in Tokamaks. An advanced prediction and mitigation system of disruption is implemented in HL-2A to safely shut down plasmas by using the laser ablation of high-Z impurities with a perturbation real-time measuring and processing system. The injection is usually triggered by the amplitude and frequency of the MHD perturbation field which is detected with a Mirnov coil and leads to the onset of a mitigated disruption within a few milliseconds. It could be a simple and potential approach to significantly reducing the plasma thermal energy and magnetic energy before a disruption, thereby achieving safe plasma termination. The plasma response to impurity injection, a mechanism for improving plasma thermal and current quench in major disruptions, the design of the disruption prediction warner, and an evaluation of the mitigation success rate are discussed in the present paper.
文摘The recent studies on Artificial Intelligence(AI)accompanied by enhanced computing capabilities supports increasing attention into traditional control methods coupled with AI learning methods in an attempt to bringing adap-tiveness and fast responding features.The Model Predictive Control(MPC)tech-nique is a widely used,safe and reliable control method based on constraints.On the other hand,the Eddy Current dynamometers are highly nonlinear braking sys-tems whose performance parameters are related to many processes related vari-ables.This study is based on an adaptive model predictive control that utilizes selected AI methods.The presented approach presents an updated the mathema-tical model of an Eddy Current Dynamometer based on experimentally obtained system operational data.Finally,the comparison of AI methods and related learn-ing performances based on the assessment technique of mean absolute percentage error(MAPE)issues are discussed.The results indicate that Single Hidden Layer Neural Network(SHLNN),General Regression Neural Network(GRNN),Radial Basis Network(RBNN),Neuro Fuzzy Network(ANFIS)coupled MPC have quite satisfying performances.The presented results indicate that,amongst them,GRNN appears to provide the best performance.
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-53)Initial Research Funds for Young Teachers of Donghua University,China(104070053029)Shanghai Rising-Star Program,China(No.19QA1400400)。
文摘Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments.
基金supported by the National Natural Science Foundation of China(No.52005037).
文摘To improve the dynamic performance of conventional deadbeat predictive current control(DPCC)under parameter mismatch,especially eliminate the current overshoot and oscillation during torque mutation,it is necessary to enhance the robustness of DPCC against various working conditions.However,the disturbance from parameter mismatch can deteriorate the dynamic performance.To deal with the above problem,firstly,traditional DPCC and the parameter sensitivity of DPCC are introduced and analyzed.Secondly,an extended state observer(ESO)combined with DPCC method is proposed,which can observe and suppress the disturbance due to various parameter mismatch.Thirdly,to improve the accuracy and stability of ESO,an adaptive extended state observer(AESO)using fuzzy controller based on ESO,is presented,and combined with DPCC method.The improved DPCC-AESO can switch the value of gain coefficients with fuzzy control,accelerating the current response speed and avoid the overshoot and oscillation,which improves the robustness and stability performance of SPMSM.Finally,the three methods,as well as conventional DPCC method,DPCC-ESO method,DPCC-AESO method,are comparatively analyzed in this paper.The effectiveness of the proposed two methods are verified by simulation and experimental results.
文摘The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order to further improve dynamic behavior. It compensates the load torque influence on the speed control setting a feed forward torque reference value. The benefits are twice; the speed controller reaches the speed reference value without offsets which would need to be compensated by an integrator and a better response to load torque variations is obtained since they are detected and compensated leading to small speed variations. Moreover, the influence of pararneter errors and disturbances has been analyzed and limited so that they play a minor role in operation.
文摘In this paper, a new predictive control strategy for current source matrix converter (CSMC) is presented. Proposed predictive control strategy allows for creating output voltages with boost type voltage transfer ratio and desired frequency. The description of predictive control circuit of the CSMC is presented. Furthermore the simulation test results to confirm functionality of the proposed control strategy and converter properties under this strategy are shown.