Since the London fog in 1952, numerous epidemioLogical studies have revealed that both short-term and long-term exposure to air pollutants is associated with the development of diseases[1]. Up to date, the assessment ...Since the London fog in 1952, numerous epidemioLogical studies have revealed that both short-term and long-term exposure to air pollutants is associated with the development of diseases[1]. Up to date, the assessment of air quality on health and air quality standard establishment in developing countries were mainly relied on extrapolation based on the results from long-term cohort studies conducted in Europe and North America.展开更多
<span style="font-family:Verdana;">The subjects of this study were to observe the improved short-term effects of anti-tumor purified Chinese medicine injection Ai-Jing for 138 cases with malignant tumo...<span style="font-family:Verdana;">The subjects of this study were to observe the improved short-term effects of anti-tumor purified Chinese medicine injection Ai-Jing for 138 cases with malignant tumors. This was a multi-center clinical study, and a total of 138 patients include</span><span style="font-family:Verdana;">d</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> 96 males and 42 females, with the age from 60 to 76 years. </span><span style="font-family:Verdana;">Ai-Jing has obtained the Chinese invention patent since 2008</span><span style="font-family:Verdana;"> (ZL991-03528.3). A novel technique acupoint injection method was adopted. Except for lung cancer, patients with other malignant tumors were injected once every other day, 2</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">ml each time. A course of treatment needs 6 Ai-Jing injections, lung cancer patients need 10</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">20 Ai-Jing injections. At the same time, patients were treated with traditional medicine decoction. Due to the limited number of cases, cure rate, recovery rate and remission rate were calculated as a whole, respectively</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">18.12%, 44.20% and 32.15%. All the invalid patients were lung cancer, accounting for 16.67% of the patients treated with lung cancer, and the total treatment inefficiency was 6.52%. Conclusion: Chinese Medicine Injection Ai-Jing extracts the effective components of anti-cancer and tumorig</span><span style="font-family:Verdana;">enesis, and has the effects of anti-cancer and tumorigenesis, anti-infl</span><span style="font-family:Verdana;">am</span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">matory and analgesic, and repairing body damage, with small toxic and side effects and low cost.</span>展开更多
Objective To compare the preliminary clinical outcome between fixed platform and rotating high-flexion prosthesis following total knee replacement(TKR).Methods Form January 2007 to December 2009,68 patients with osteo...Objective To compare the preliminary clinical outcome between fixed platform and rotating high-flexion prosthesis following total knee replacement(TKR).Methods Form January 2007 to December 2009,68 patients with osteoarthritis of展开更多
Objective To investigate variation in levels of transforming growth factor beta 1(TGF-β1)before and after radiotherapy in patients with esophageal cancer in order to evaluate the predictive value of TGF-β1 for the e...Objective To investigate variation in levels of transforming growth factor beta 1(TGF-β1)before and after radiotherapy in patients with esophageal cancer in order to evaluate the predictive value of TGF-β1 for the effects of radiotherapy Methods A total of 140 patients with esophageal squamous carcinoma undergoing radical radiation therapy in the Department of Oncology from March 2015 to December 2017 were enrolled.The patients were divided into the effective(115 cases)and ineffective(25 cases)groups according to World Health Organization(WHO)criteria for the evaluation of solid tumors(2009 RECIST standard).TGF-β1 levels were measured in all patients by using enzyme-linked immunosorbent assay(ELISA).Multiple-factor analysis of the predictive value of the treatment efficacy was performed by Cox regression analysis.Results After radiotherapy,36,79,and 25 cases experienced complete response(CR),partial response(PR),and no response(NR),respectively,with a total effective rate of 82.14%.The TGF-β1 level was significantly lower in the effective group than that in the ineffective group(P<0.05)and covariance analysis revealed significantly reduced TGF-β1 level in esophageal cancer patients following radiotherapy.The multi-factor Cox regression model revealed that the predictive value of TGF-β1 for the effect of radiotherapy was largest,with a hazard ratio[HR]of 1.955(P=0.002),followed by exposure dose,with(HR=1.367;P=0.035).Conclusion Serum TGF-β1 level can serve as a predictor for the short-term effects of radiotherapy in patients with esophageal cancer.展开更多
BACKGROUND Liver cancer is a malignant tumor with high morbidity and mortality.Transcatheter arterial chemoembolization(TACE)is the main method for surgically unresectable liver cancer.In recent years,drug-loaded micr...BACKGROUND Liver cancer is a malignant tumor with high morbidity and mortality.Transcatheter arterial chemoembolization(TACE)is the main method for surgically unresectable liver cancer.In recent years,drug-loaded microspheres have been gradually applied in TACE technology.There are some controversies about the therapeutic effects of drug-loaded microspheres TACE(D-TACE)and traditional TACE.AIM To explore the short-term efficacy of D-TACE and traditional TACE in the treatment of advanced liver cancer.METHODS The clinical data of 73 patients with advanced liver cancer admitted to the First and Sixth Medical Centers of Chinese PLA General Hospital from January 2017 to October 2019 were retrospectively analyzed.Among them,15 patients were treated with D-TACE,and 58 patients were treated with traditional TACE.Clinical baseline characteristics,perioperative laboratory indices,postoperative adverse reactions and postoperative complications were compared between the two groups.RESULTS There was no statistical difference between the two groups for the postoperative response:The highest postoperative body temperature of the drug-loaded microsphere group was 38.0±0.9℃and the postoperative highest body temperature of the traditional TACE group was 38.3±0.7℃(t=-1.414,P=0.162).For the 24 h postoperative nausea and vomiting after surgery in terms of scoring and postoperative pain scores,the traditional TACE group was higher than the drugloaded microsphere group(χ2=14.33,P=0.014;χ2=32.967,P=0.000)and the two groups had significant statistical differences.The disease control rate at 3 mo after treatment in the drugloaded microsphere group was 60%and the disease control rate at 3 mo after treatment in the traditional TACE group was 75.9%(χ2=4.091,P=0.252).There was no statistical difference between the two groups of data.During the follow-up period,the number of interventional treatments received was once in the drug-loaded microsphere group and the traditional TACE group received an average of 1.48 treatments(χ2=10.444 P=0.005).There was a statistical difference between the two groups.CONCLUSION Compared with traditional TACE,D-TACE may have some advantages in the treatment of advanced hepatocellular carcinoma with a large tumor load in the short term,but the long-term clinical efficacy needs additional follow-up studies.In addition,compared with the traditional group,the patients in the drug-loaded microsphere group had better subjective tolerance and could reduce the number of interventional treatments.Therefore,D-TACE is worthy of clinical promotion.展开更多
Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based met...Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based methods,tracking on a single CPU core,or parallelizing the computation across multiple cores via the message passing interface(MPI).Although these approaches work well for single-bunch tracking,scaling them to multiple bunches significantly increases the computational load,which often necessitates the use of a dedicated multi-CPU cluster.To address this challenge,alternative methods leveraging General-Purpose computing on Graphics Processing Units(GPGPU)have been proposed,enabling tracking studies on a standalone desktop personal computer(PC).However,frequent CPU-GPU interactions,including data transfers and synchronization operations during tracking,can introduce communication overheads,potentially reducing the overall effectiveness of GPU-based computations.In this study,we propose a novel approach that eliminates this overhead by performing the entire tracking simulation process exclusively on the GPU,thereby enabling the simultaneous processing of all bunches and their macro-particles.Specifically,we introduce MBTRACK2-CUDA,a Compute Unified Device Architecture(CUDA)ported version of MBTRACK2,which facilitates efficient tracking of single-and multi-bunch collective effects by leveraging the full GPU-resident computation.展开更多
In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural a...In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural and anthropogenic effects on marine aerosols optical properties,as well as the applicability of multi-satellite products and IMPROVE equation.The averaged aerosol optical depth(AOD500 nm)was 0.31±0.16 andÅngström exponent440–675 nm was 0.29±0.30.In offshore China,significant anthropogenic emissions affected the marine environment.In remote WPO,dust aerosols transported from northern China,Siberia,Central Asia,and those settling from the upper troposphere originating from north Africa,Arabian peninsula,and western India,were dominant.The spatial trends of AOD were opposite in the mid-latitude and southern seas of WPO.The highest AOD,0.32±0.23,appeared along the coast of South Asia at mid-latitude,decreasing from offshore seas to remote oceans.In low-latitude and equatorial seas,AOD significantly increased from coast to remote oceans.Ångström exponent dropped significantly from the coast to remote oceans as anthropogenic influence diminished across the entire WPO.Correlation analysis showed that both MODIS-C6 and Himawari AOD prod-ucts showed similar applicability in coastal urban areas,while Himawari AOD is highly recommended for coastal background and marine environment due to its finer resolution.The extinction coefficient derived from PM_(2.5) chemical compositions using IMPROVE algorithm exhibited a significant correlation(R^(2)=0.58)with the con-currently measured AOD in the absence of long-distance transport,suggesting that the IMPROVE is a reasonable proxy of the columnar average of marine aerosol extinctions free from transport influences.展开更多
Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and l...Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and long-range electric vehicles.However,technical barriers such as dendrite growth and poor Li plating/stripping reversibility severely hinder the practical application of LMBs.However,lithium nitrate(LiNO_(3))is found to be able to stabilize the Li/electrolyte interface and has been used to address the above challenges.To date,considerable research efforts have been devoted toward understanding the roles of LiNO_(3) in regulating the surface properties of Li anodes and toward the development of many effective strategies.These research efforts are partially mentioned in some articles on LMBs and yet have not been reviewed systematically.To fill this gap,we discuss the recent advances in fundamental and technological research on LiNO_(3) and its derivatives for improving the performances of LMBs,particularly for Li-sulfur(S),Li-oxygen(O),and Li-Li-containing transition-metal oxide(LTMO)batteries,as well as LiNO_(3)-containing recipes for precursors in battery materials and interphase fabrication.This review pays attention to the effects of LiNO_(3) in lithium-based batteries,aiming to provide scientific guidance for the optimization of electrode/electrolyte interfaces and enrich the design of advanced LMBs.展开更多
BACKGROUND Gastric cancer is a major global health issue,and the perioperative period critic-ally influences patient outcomes.The different effects of sevoflurane inhalation anesthesia and propofol total intravenous a...BACKGROUND Gastric cancer is a major global health issue,and the perioperative period critic-ally influences patient outcomes.The different effects of sevoflurane inhalation anesthesia and propofol total intravenous anesthesia on intraoperative stability,postoperative complications,and long-term oncologic outcomes in patients with gastric cancer undergoing radical gastrectomy remain unclear.AIM To compare the effects of sevoflurane inhalation anesthesia and propofol total in-travenous anesthesia on clinical outcomes,including intraoperative indicators,postoperative complications,adverse effects,pain scores,and survival.METHODS This single-center retrospective cohort study included 204 patients who underw-ent radical gastrectomy for gastric cancer from February 2019 to December 2022.Patients were assigned to either the sevoflurane group(n=103)or the propofol group(n=101)based on intraoperative anesthetic regimen.Standardized protoc-ols for anesthesia management,intraoperative monitoring,and postoperative analgesia were applied.Baseline characteristics;intraoperative metrics;adverse events;complications;Visual Analog Scale(VAS)scores at 2,4,6,24,and 48 hours;and survival outcomes were retrospectively collected.Group comparisons were performed usingχ2 for categorical variables,t test for continuous variables,RESULTS Baseline demographic and clinical characteristics were similar between groups.No significant differences were observed in intraoperative indicators or most 30-day postoperative outcomes,including length of stay,emergency department visits,and readmission rates.The propofol group showed elevated mean VAS pain score at 24 hours postoperatively,but no differences were found at other time points.The propofol group also had significantly higher postoperative nausea incidence and transiently higher systolic/diastolic blood pressure and heart rate at the time of incision than the sevoflurane group.No significant differences were seen in overall rates or severity of postoperative complications,intraoperative adverse events,or in overall survival and progression-free survival.CONCLUSION In patients undergoing radical gastrectomy for gastric cancer,sevoflurane and propofol anesthesia demonstrated similar profiles regarding intraoperative safety,postoperative complications,adverse events,postoperative pain,and long-term survival.The selection of anesthesia can be personalized without significantly affecting periop-erative or oncologic outcomes.展开更多
This paper employs Granger causality analysis and the generalized impulse response function(GIRF)to study the higher-order moment spillover effects among Bitcoin,stock markets,and foreign exchange markets in the U.S.U...This paper employs Granger causality analysis and the generalized impulse response function(GIRF)to study the higher-order moment spillover effects among Bitcoin,stock markets,and foreign exchange markets in the U.S.Using intraday high-frequency data,the research focuses on the interactions across higher-order moments,including volatility,jumps,skewness,and kurtosis.The results reveal significant bidirectional spillover effects between Bitcoin and traditional financial assets,particularly in terms of volatility and jump behavior,indicating that the cryptocurrency market has become a crucial component of global financial risk transmission.This study provides new theoretical perspectives and policy recommendations for global asset allocation,market regulation,and risk management,underscoring the importance of proactive management measures in addressing the complex risk interactions between cryptocurrencies and traditional financial markets.展开更多
[Objective] This study aimed to investigate the endodormancy release in nectarine bud treated by short-term freezing. [Method] Through short-term freezing at seven different temperatures for three different periods on...[Objective] This study aimed to investigate the endodormancy release in nectarine bud treated by short-term freezing. [Method] Through short-term freezing at seven different temperatures for three different periods on bud, the livability, burst, ratio of free water to bound water and membrane permeability of 'Shuguang' nec- tarine bud were studied. [Result] On November 10, compared with non-freezing treatment (CK), the bud burst, ratio of free water to bound water and membrane permeability treated by freezing at -5 and -8 ℃ were almost the same as CK. But the rest freezing treatments advanced the date of endodormancy release, while the bud burst, ratio of free water to bound water and membrane permeability were high- er than CK. on November 20 and 30, the effects of the freezing treatment on en- dodormancy release were the same when the treatment on November 10, and the effect was better as the treatment was later. [Conclusion] The correlation of the rate of bud burst, ratio of free water to bound water, and membrane permeability of the different freezing treatments indicated that the change from bound water to free wa- ter and the increase of membrane permeability were probably the signal of endodor- mancy release.展开更多
Multidimensional confined structure systems are proposed and demonstrated by using MoO_(2)@MO_(2)C(MMC)to enhance the photothermal catalytic performance of the metal sulfides-multidimensional confined structure(TMs-MD...Multidimensional confined structure systems are proposed and demonstrated by using MoO_(2)@MO_(2)C(MMC)to enhance the photothermal catalytic performance of the metal sulfides-multidimensional confined structure(TMs-MDCS).Specifically,the MMC nanoparticles confined to the surface of the ZnIn_(2)S_(4)hollow tube-shell(MMC/HT-ZIS)achieve a hydrogen evolution rate of 9.72 mmol g^(-1)h^(-1),which is 11.2 times higher than that of pure HT-ZIS.Meanwhile,the MnCdS(MCS)nanoparticles are encapsulated within the two-dimensional MMC(2D MMC/MCS)through precise regulation of size and morphology.The 10-MMC/MCS lamellar network demonstrates the highest hydrogen evolution rate of 8.19 mmol g^(-1)-h^(-1).The obtained MMC/TMs-MDCS catalysts exhibit an enhanced photocatalytic hydrogen evolution rate,which can be attributed to the strong synergistic interaction between the multidimensional confinement and the photothermal effects.The confinement space and the strong interfacial relationship within the MMC/TMs-MDCS create abundant channels and active sites that facilitate electron migration and transport.Furthermore,the construction of a confined environment positions these materials as promising candidates for achieving exceptional photothermal catalytic performance,as MMC/TMs-MDCS enhance light absorption through light scattering and reflecting effects.Additionally,the capacity of MMC/TMsMDCS to convert solar light into thermal energy significantly reduces the activation energy of the reaction,thereby facilitating reaction kinetics and accelerating the separation and transport of photogenerated carriers.This work provides valuable insights for the development of highly efficient photothermal catalytic water-splitting systems for hydrogen production using multidimensional confined catalysts.展开更多
Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest managemen...Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest management.However,studies have shown that agroforestry can not only improve land productivity and biodiversity but also regulate some ecosystem services.This study reviews the impacts of physical and biological factors on herbivorous pests,parasites,and predatory natural enemies in fruit-crop agroforestry systems.Fruit-crop agroforestry systems provide high spatial heterogeneity by altering crop layouts,regulating the microclimate and soil quality,and offering food resources and shelter for natural enemies,thus promoting biological pest control.This enhances biological control and makes the agrocomplex system an effective tool for sustainable agriculture.Our research shows that volatile plant substances attract or repel pests and natural enemies based on the characteristics of the insects themselves.When scientifically designed,fruit-crop agroforestry systems provide high spatial heterogeneity and favorable microclimatic conditions,which enhance biological pest control and make the agroforestry system an effective tool for sustainable agriculture.Our research shows that fruit-crop agroforestry systems can provide richer food resources and habitat,enhancing biological pest control and improving pest management.展开更多
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P...Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.展开更多
Heat stress occurs frequently in energy-saving sunlight greenhouses(ESSG) at the late growth stage. Three-year delayed cultivation(DC) of the Red Globe cultivar of Vitis vinifera L. was used to clarify the physiologic...Heat stress occurs frequently in energy-saving sunlight greenhouses(ESSG) at the late growth stage. Three-year delayed cultivation(DC) of the Red Globe cultivar of Vitis vinifera L. was used to clarify the physiological mechanisms of short-term heat stress on PSII and subsequent recovery from heat stress. By November, the photosynthetic function had declined and the fall in transpiration rate(E) with heating time increased the possibility of heat damage. In July, the most obvious increase was in the relative variable fluorescence at J point at 40°C, and in November it changed to K point. The 5 min of heat treatment resulted in a significant increase of the relative variable fluorescence at 0.3 ms(W), and after 10 min of heat treatment, the number of reactive centres per excited cross section(RC/CS), probability that a trapped exciton moves an electron into the electron transport chain beyond Q–(at t=0)(Ψ) and quantum yield of electron transport at t=0(φ) decreased significantly(P<0.05), suggesting that the reaction centre, donor and acceptor side of photosystem II(PSII) were all significantly inhibited(P<0.05) and that the thermal stability of the photosynthetic mechanism was reduced. The inhibition of energy fluxes for senescent leaves in November was earlier and more pronounced than that for healthy leaves, which did not recover from heat stress of more than 15 min after 2 h recovery at room temperature.展开更多
Plants maintain water balance by varying hydraulic properties, and plasma membrane intrinsic proteins(PIPs) may be involved in this process. Leaf xylem and root hydraulic conductivity and the m RNA contents of four ...Plants maintain water balance by varying hydraulic properties, and plasma membrane intrinsic proteins(PIPs) may be involved in this process. Leaf xylem and root hydraulic conductivity and the m RNA contents of four highly expressed Zm PIP genes(Zm PIP1;1, Zm PIP1;2, Zm PIP2;2, and Zm PIP2;5) in maize(Zea mays) seedlings were investigated. Under well-watered conditions, leaf hydraulic conductivity(K_(leaf)) varied diurnally and was correlated with whole-plant hydraulic conductivity. Similar diurnal rhythms of leaf transpiration rate(E), K_(leaf) and root hydraulic conductivity(K_(root)) in well-watered plants are important for maintaining whole-plant water balance. After 2 h of osmotic stress treatment induced by 10% polyethylene glycol 6000, the K_(root) of stressed plants decreased but K_(leaf) increased, compared with well-watered plants. The m RNA contents of four Zm PIPs were significantly up-regulated in the leaves of stressed plants, especially for Zm PIP1;2. Meanwhile, Zm PIP2;5 was significantly down-regulated in the roots of stressed plants. After 4 h of osmotic stress treatment, the E and leaf xylem water potentials of stressed plants unexpectedly increased. The increase in K_(leaf) and a partial recovery of K_(root) may have contributed to this process. The m RNA content of Zm PIP1;2 but not of the other three genes was up-regulated in roots at this time. In summary, the m RNA contents of these four Zm PIPs associated with K_(leaf) and K_(root) change in maize seedlings during short-term osmotic stress, especially for Zm PIP1;2 and Zm PIP2;5, which may help to further reveal the hydraulic resistance adjustment role of Zm PIPs.展开更多
The past decade has witnessed the rapid increasement in power conversion efficiency of perovskite solar cells(PSCs).However,serious ion migration hampers their operational stability.Although dopants composed of varied...The past decade has witnessed the rapid increasement in power conversion efficiency of perovskite solar cells(PSCs).However,serious ion migration hampers their operational stability.Although dopants composed of varied cations and anions are introduced into perovskite to suppress ion migration,the impact of cations or anions is not individually explored,which hinders the evaluation of different cations and further application of doping strategy.Here we report that a special group of sulfonic anions(like CF_(3)SO_(3)^(-))successfully introduce alkaline earth ions(like Ca^(2+))into perovskite lattice compared to its halide counterparts.Furthermore,with effective crystallization regulation and defect passivation of sulfonic anions,perovskite with Ca(CF_(3)SO_(3))_(2)shows reduced PbI2 residue and metallic Pb0 defects;thereby,corresponding PSCs show an enhanced PCE of 24.95%.Finally by comparing the properties of perovskite with Ca(CF_(3)SO_(3))_(2)and FACF_(3)SO_(3),we found that doped Ca^(2+)significantly suppressed halide migration with an activation energy of 1.246 eV which accounts for the improved operational stability of Ca(CF_(3)SO_(3))_(2-)doped PSCs,while no obvious impact of Ca^(2+)on trap density is observed.Combining the benefits of cations and anions,this study presents an effective method to decouple the effects of cations and anions and fabricate efficient and stable PSCs.展开更多
Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective ...Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing.展开更多
Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promi...Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions.Exos derived from mesenchymal stem cells(MSCs)have significant immunomodulatory properties.They effectively regulate immune responses by modulating both innate and adaptive immunity.These Exos can inhibit excessive inflammatory responses and promote tissue repair.Moreover,they participate in antigen presentation,which is essential for activating immune responses.The cargo of these Exos,including ligands,proteins,and microRNAs,can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response.By inhibiting lymphocyte proliferation,acting on macrophages,and increasing the population of regulatory T cells,these Exos contribute to maintaining immune and metabolic homeostasis.Furthermore,they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells,which holds potential for immunotherapy applications.Given the immense therapeutic potential of MSC-derived Exos,this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control,tumor suppression,and autoimmune disease management.This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos,offering theoretical references for their future clinical utilization as cell-free drug preparations.展开更多
Excellent progress has been made in the last few decades in the cure rates of pediatric malignancies,with more than 80%of children with cancer who have access to contemporary treatment being cured.However,the therapie...Excellent progress has been made in the last few decades in the cure rates of pediatric malignancies,with more than 80%of children with cancer who have access to contemporary treatment being cured.However,the therapies responsible for this survival can also produce adverse physical and psychological long-term outcomes,referred to as late effects,which appear months to years after the completion of cancer treatment.Research has shown that 60%to 90%of childhood cancer survivors(CCSs)develop one or more chronic health conditions,and 20%to 80%of survivors experience severe or life-threatening complications during adulthood.Therefore,understanding the late side effects of such treatments is important to improve the health and quality of life of the growing population of CCSs.展开更多
基金supported by the National Basic Research Program (973 program) of China (2011CB503802)the Gong-Yi Program of the Chinese Ministry of Environmental Protection (201209008)+2 种基金Shanghai Municipal Committee of Science and Technology (12dz1202602)Shanghai Health Bureau (GWDTR201212)the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education (2011)
文摘Since the London fog in 1952, numerous epidemioLogical studies have revealed that both short-term and long-term exposure to air pollutants is associated with the development of diseases[1]. Up to date, the assessment of air quality on health and air quality standard establishment in developing countries were mainly relied on extrapolation based on the results from long-term cohort studies conducted in Europe and North America.
文摘<span style="font-family:Verdana;">The subjects of this study were to observe the improved short-term effects of anti-tumor purified Chinese medicine injection Ai-Jing for 138 cases with malignant tumors. This was a multi-center clinical study, and a total of 138 patients include</span><span style="font-family:Verdana;">d</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> 96 males and 42 females, with the age from 60 to 76 years. </span><span style="font-family:Verdana;">Ai-Jing has obtained the Chinese invention patent since 2008</span><span style="font-family:Verdana;"> (ZL991-03528.3). A novel technique acupoint injection method was adopted. Except for lung cancer, patients with other malignant tumors were injected once every other day, 2</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">ml each time. A course of treatment needs 6 Ai-Jing injections, lung cancer patients need 10</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">20 Ai-Jing injections. At the same time, patients were treated with traditional medicine decoction. Due to the limited number of cases, cure rate, recovery rate and remission rate were calculated as a whole, respectively</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">18.12%, 44.20% and 32.15%. All the invalid patients were lung cancer, accounting for 16.67% of the patients treated with lung cancer, and the total treatment inefficiency was 6.52%. Conclusion: Chinese Medicine Injection Ai-Jing extracts the effective components of anti-cancer and tumorig</span><span style="font-family:Verdana;">enesis, and has the effects of anti-cancer and tumorigenesis, anti-infl</span><span style="font-family:Verdana;">am</span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">matory and analgesic, and repairing body damage, with small toxic and side effects and low cost.</span>
文摘Objective To compare the preliminary clinical outcome between fixed platform and rotating high-flexion prosthesis following total knee replacement(TKR).Methods Form January 2007 to December 2009,68 patients with osteoarthritis of
文摘Objective To investigate variation in levels of transforming growth factor beta 1(TGF-β1)before and after radiotherapy in patients with esophageal cancer in order to evaluate the predictive value of TGF-β1 for the effects of radiotherapy Methods A total of 140 patients with esophageal squamous carcinoma undergoing radical radiation therapy in the Department of Oncology from March 2015 to December 2017 were enrolled.The patients were divided into the effective(115 cases)and ineffective(25 cases)groups according to World Health Organization(WHO)criteria for the evaluation of solid tumors(2009 RECIST standard).TGF-β1 levels were measured in all patients by using enzyme-linked immunosorbent assay(ELISA).Multiple-factor analysis of the predictive value of the treatment efficacy was performed by Cox regression analysis.Results After radiotherapy,36,79,and 25 cases experienced complete response(CR),partial response(PR),and no response(NR),respectively,with a total effective rate of 82.14%.The TGF-β1 level was significantly lower in the effective group than that in the ineffective group(P<0.05)and covariance analysis revealed significantly reduced TGF-β1 level in esophageal cancer patients following radiotherapy.The multi-factor Cox regression model revealed that the predictive value of TGF-β1 for the effect of radiotherapy was largest,with a hazard ratio[HR]of 1.955(P=0.002),followed by exposure dose,with(HR=1.367;P=0.035).Conclusion Serum TGF-β1 level can serve as a predictor for the short-term effects of radiotherapy in patients with esophageal cancer.
基金National key research and development project of Ministry of Science and Technology,No.2016YFC0103908.
文摘BACKGROUND Liver cancer is a malignant tumor with high morbidity and mortality.Transcatheter arterial chemoembolization(TACE)is the main method for surgically unresectable liver cancer.In recent years,drug-loaded microspheres have been gradually applied in TACE technology.There are some controversies about the therapeutic effects of drug-loaded microspheres TACE(D-TACE)and traditional TACE.AIM To explore the short-term efficacy of D-TACE and traditional TACE in the treatment of advanced liver cancer.METHODS The clinical data of 73 patients with advanced liver cancer admitted to the First and Sixth Medical Centers of Chinese PLA General Hospital from January 2017 to October 2019 were retrospectively analyzed.Among them,15 patients were treated with D-TACE,and 58 patients were treated with traditional TACE.Clinical baseline characteristics,perioperative laboratory indices,postoperative adverse reactions and postoperative complications were compared between the two groups.RESULTS There was no statistical difference between the two groups for the postoperative response:The highest postoperative body temperature of the drug-loaded microsphere group was 38.0±0.9℃and the postoperative highest body temperature of the traditional TACE group was 38.3±0.7℃(t=-1.414,P=0.162).For the 24 h postoperative nausea and vomiting after surgery in terms of scoring and postoperative pain scores,the traditional TACE group was higher than the drugloaded microsphere group(χ2=14.33,P=0.014;χ2=32.967,P=0.000)and the two groups had significant statistical differences.The disease control rate at 3 mo after treatment in the drugloaded microsphere group was 60%and the disease control rate at 3 mo after treatment in the traditional TACE group was 75.9%(χ2=4.091,P=0.252).There was no statistical difference between the two groups of data.During the follow-up period,the number of interventional treatments received was once in the drug-loaded microsphere group and the traditional TACE group received an average of 1.48 treatments(χ2=10.444 P=0.005).There was a statistical difference between the two groups.CONCLUSION Compared with traditional TACE,D-TACE may have some advantages in the treatment of advanced hepatocellular carcinoma with a large tumor load in the short term,but the long-term clinical efficacy needs additional follow-up studies.In addition,compared with the traditional group,the patients in the drug-loaded microsphere group had better subjective tolerance and could reduce the number of interventional treatments.Therefore,D-TACE is worthy of clinical promotion.
基金supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)(No.RS-2022-00143178)the Ministry of Education(MOE)(Nos.2022R1A6A3A13053896 and 2022R1F1A1074616),Republic of Korea.
文摘Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based methods,tracking on a single CPU core,or parallelizing the computation across multiple cores via the message passing interface(MPI).Although these approaches work well for single-bunch tracking,scaling them to multiple bunches significantly increases the computational load,which often necessitates the use of a dedicated multi-CPU cluster.To address this challenge,alternative methods leveraging General-Purpose computing on Graphics Processing Units(GPGPU)have been proposed,enabling tracking studies on a standalone desktop personal computer(PC).However,frequent CPU-GPU interactions,including data transfers and synchronization operations during tracking,can introduce communication overheads,potentially reducing the overall effectiveness of GPU-based computations.In this study,we propose a novel approach that eliminates this overhead by performing the entire tracking simulation process exclusively on the GPU,thereby enabling the simultaneous processing of all bunches and their macro-particles.Specifically,we introduce MBTRACK2-CUDA,a Compute Unified Device Architecture(CUDA)ported version of MBTRACK2,which facilitates efficient tracking of single-and multi-bunch collective effects by leveraging the full GPU-resident computation.
基金supported by the CAS Strategic Priority Research Program(No.XDB0760102),the Ministry of Science and Technology of China(No.2022YFF0802501)the Major Science and Technology Infrastructure Maintenance and Transformation Project of the Chinese Academy of Sciences,Shanghai Science and Technology Innovation Action Plan-Phospherus Project(No.23YF1426200)the National Key Research and Development Program of China(No.2024YFE0212200).
文摘In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural and anthropogenic effects on marine aerosols optical properties,as well as the applicability of multi-satellite products and IMPROVE equation.The averaged aerosol optical depth(AOD500 nm)was 0.31±0.16 andÅngström exponent440–675 nm was 0.29±0.30.In offshore China,significant anthropogenic emissions affected the marine environment.In remote WPO,dust aerosols transported from northern China,Siberia,Central Asia,and those settling from the upper troposphere originating from north Africa,Arabian peninsula,and western India,were dominant.The spatial trends of AOD were opposite in the mid-latitude and southern seas of WPO.The highest AOD,0.32±0.23,appeared along the coast of South Asia at mid-latitude,decreasing from offshore seas to remote oceans.In low-latitude and equatorial seas,AOD significantly increased from coast to remote oceans.Ångström exponent dropped significantly from the coast to remote oceans as anthropogenic influence diminished across the entire WPO.Correlation analysis showed that both MODIS-C6 and Himawari AOD prod-ucts showed similar applicability in coastal urban areas,while Himawari AOD is highly recommended for coastal background and marine environment due to its finer resolution.The extinction coefficient derived from PM_(2.5) chemical compositions using IMPROVE algorithm exhibited a significant correlation(R^(2)=0.58)with the con-currently measured AOD in the absence of long-distance transport,suggesting that the IMPROVE is a reasonable proxy of the columnar average of marine aerosol extinctions free from transport influences.
基金supported by the Yunnan Fundamental Research Projects(Grant Nos.202401AU070163 and 202501AT070298)the Yunnan Engineering Research Center Innovation Ability Construction and Enhancement Projects(Grant No.2023-XMDJ-00617107)+5 种基金the University Service Key Industry Project of Yunnan Province(Grant No.FWCY-ZD2024005)the Expert Workstation Support Project of Yunnan Province(Grant No.202405AF140069)the Scientific Research Foundation of Kunming University of Science and Technology(Grant No.20220122)the Analysis and Test Foundation of Kunming University of Science and Technology(Grant No.2023T20220122)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2025QN02057)the Ordos City Strategic Pioneering Science and Technology Special Program for New Energy(Grant No.DC2400003365).
文摘Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and long-range electric vehicles.However,technical barriers such as dendrite growth and poor Li plating/stripping reversibility severely hinder the practical application of LMBs.However,lithium nitrate(LiNO_(3))is found to be able to stabilize the Li/electrolyte interface and has been used to address the above challenges.To date,considerable research efforts have been devoted toward understanding the roles of LiNO_(3) in regulating the surface properties of Li anodes and toward the development of many effective strategies.These research efforts are partially mentioned in some articles on LMBs and yet have not been reviewed systematically.To fill this gap,we discuss the recent advances in fundamental and technological research on LiNO_(3) and its derivatives for improving the performances of LMBs,particularly for Li-sulfur(S),Li-oxygen(O),and Li-Li-containing transition-metal oxide(LTMO)batteries,as well as LiNO_(3)-containing recipes for precursors in battery materials and interphase fabrication.This review pays attention to the effects of LiNO_(3) in lithium-based batteries,aiming to provide scientific guidance for the optimization of electrode/electrolyte interfaces and enrich the design of advanced LMBs.
文摘BACKGROUND Gastric cancer is a major global health issue,and the perioperative period critic-ally influences patient outcomes.The different effects of sevoflurane inhalation anesthesia and propofol total intravenous anesthesia on intraoperative stability,postoperative complications,and long-term oncologic outcomes in patients with gastric cancer undergoing radical gastrectomy remain unclear.AIM To compare the effects of sevoflurane inhalation anesthesia and propofol total in-travenous anesthesia on clinical outcomes,including intraoperative indicators,postoperative complications,adverse effects,pain scores,and survival.METHODS This single-center retrospective cohort study included 204 patients who underw-ent radical gastrectomy for gastric cancer from February 2019 to December 2022.Patients were assigned to either the sevoflurane group(n=103)or the propofol group(n=101)based on intraoperative anesthetic regimen.Standardized protoc-ols for anesthesia management,intraoperative monitoring,and postoperative analgesia were applied.Baseline characteristics;intraoperative metrics;adverse events;complications;Visual Analog Scale(VAS)scores at 2,4,6,24,and 48 hours;and survival outcomes were retrospectively collected.Group comparisons were performed usingχ2 for categorical variables,t test for continuous variables,RESULTS Baseline demographic and clinical characteristics were similar between groups.No significant differences were observed in intraoperative indicators or most 30-day postoperative outcomes,including length of stay,emergency department visits,and readmission rates.The propofol group showed elevated mean VAS pain score at 24 hours postoperatively,but no differences were found at other time points.The propofol group also had significantly higher postoperative nausea incidence and transiently higher systolic/diastolic blood pressure and heart rate at the time of incision than the sevoflurane group.No significant differences were seen in overall rates or severity of postoperative complications,intraoperative adverse events,or in overall survival and progression-free survival.CONCLUSION In patients undergoing radical gastrectomy for gastric cancer,sevoflurane and propofol anesthesia demonstrated similar profiles regarding intraoperative safety,postoperative complications,adverse events,postoperative pain,and long-term survival.The selection of anesthesia can be personalized without significantly affecting periop-erative or oncologic outcomes.
文摘This paper employs Granger causality analysis and the generalized impulse response function(GIRF)to study the higher-order moment spillover effects among Bitcoin,stock markets,and foreign exchange markets in the U.S.Using intraday high-frequency data,the research focuses on the interactions across higher-order moments,including volatility,jumps,skewness,and kurtosis.The results reveal significant bidirectional spillover effects between Bitcoin and traditional financial assets,particularly in terms of volatility and jump behavior,indicating that the cryptocurrency market has become a crucial component of global financial risk transmission.This study provides new theoretical perspectives and policy recommendations for global asset allocation,market regulation,and risk management,underscoring the importance of proactive management measures in addressing the complex risk interactions between cryptocurrencies and traditional financial markets.
基金Supported by the Special Fund of Modern System of Agricultural Industry Technology(CARS-30-6)the Special Fund of Department of Science and Technology,Liaoning Province(2011204001)~~
文摘[Objective] This study aimed to investigate the endodormancy release in nectarine bud treated by short-term freezing. [Method] Through short-term freezing at seven different temperatures for three different periods on bud, the livability, burst, ratio of free water to bound water and membrane permeability of 'Shuguang' nec- tarine bud were studied. [Result] On November 10, compared with non-freezing treatment (CK), the bud burst, ratio of free water to bound water and membrane permeability treated by freezing at -5 and -8 ℃ were almost the same as CK. But the rest freezing treatments advanced the date of endodormancy release, while the bud burst, ratio of free water to bound water and membrane permeability were high- er than CK. on November 20 and 30, the effects of the freezing treatment on en- dodormancy release were the same when the treatment on November 10, and the effect was better as the treatment was later. [Conclusion] The correlation of the rate of bud burst, ratio of free water to bound water, and membrane permeability of the different freezing treatments indicated that the change from bound water to free wa- ter and the increase of membrane permeability were probably the signal of endodor- mancy release.
基金supported by the Postgraduate Education Reform Project of Shandong Province(SDYAL2023032)the National Key Research and Development Program(2021YFB3500102)。
文摘Multidimensional confined structure systems are proposed and demonstrated by using MoO_(2)@MO_(2)C(MMC)to enhance the photothermal catalytic performance of the metal sulfides-multidimensional confined structure(TMs-MDCS).Specifically,the MMC nanoparticles confined to the surface of the ZnIn_(2)S_(4)hollow tube-shell(MMC/HT-ZIS)achieve a hydrogen evolution rate of 9.72 mmol g^(-1)h^(-1),which is 11.2 times higher than that of pure HT-ZIS.Meanwhile,the MnCdS(MCS)nanoparticles are encapsulated within the two-dimensional MMC(2D MMC/MCS)through precise regulation of size and morphology.The 10-MMC/MCS lamellar network demonstrates the highest hydrogen evolution rate of 8.19 mmol g^(-1)-h^(-1).The obtained MMC/TMs-MDCS catalysts exhibit an enhanced photocatalytic hydrogen evolution rate,which can be attributed to the strong synergistic interaction between the multidimensional confinement and the photothermal effects.The confinement space and the strong interfacial relationship within the MMC/TMs-MDCS create abundant channels and active sites that facilitate electron migration and transport.Furthermore,the construction of a confined environment positions these materials as promising candidates for achieving exceptional photothermal catalytic performance,as MMC/TMs-MDCS enhance light absorption through light scattering and reflecting effects.Additionally,the capacity of MMC/TMsMDCS to convert solar light into thermal energy significantly reduces the activation energy of the reaction,thereby facilitating reaction kinetics and accelerating the separation and transport of photogenerated carriers.This work provides valuable insights for the development of highly efficient photothermal catalytic water-splitting systems for hydrogen production using multidimensional confined catalysts.
文摘Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest management.However,studies have shown that agroforestry can not only improve land productivity and biodiversity but also regulate some ecosystem services.This study reviews the impacts of physical and biological factors on herbivorous pests,parasites,and predatory natural enemies in fruit-crop agroforestry systems.Fruit-crop agroforestry systems provide high spatial heterogeneity by altering crop layouts,regulating the microclimate and soil quality,and offering food resources and shelter for natural enemies,thus promoting biological pest control.This enhances biological control and makes the agrocomplex system an effective tool for sustainable agriculture.Our research shows that volatile plant substances attract or repel pests and natural enemies based on the characteristics of the insects themselves.When scientifically designed,fruit-crop agroforestry systems provide high spatial heterogeneity and favorable microclimatic conditions,which enhance biological pest control and make the agroforestry system an effective tool for sustainable agriculture.Our research shows that fruit-crop agroforestry systems can provide richer food resources and habitat,enhancing biological pest control and improving pest management.
基金supported by the National Natural Science Foundation of China(No.41473068)supported by China Postdoctoral Science Foundation(No.2022M722667)。
文摘Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.
基金supported by the National Natural Science Foundation of China(31660585)the Experimental Station for Scientific Observation of Fruit Trees in the Northwest of China(10218020)the earmarked fund for China Agriculture Research System(CARS-30-21)
文摘Heat stress occurs frequently in energy-saving sunlight greenhouses(ESSG) at the late growth stage. Three-year delayed cultivation(DC) of the Red Globe cultivar of Vitis vinifera L. was used to clarify the physiological mechanisms of short-term heat stress on PSII and subsequent recovery from heat stress. By November, the photosynthetic function had declined and the fall in transpiration rate(E) with heating time increased the possibility of heat damage. In July, the most obvious increase was in the relative variable fluorescence at J point at 40°C, and in November it changed to K point. The 5 min of heat treatment resulted in a significant increase of the relative variable fluorescence at 0.3 ms(W), and after 10 min of heat treatment, the number of reactive centres per excited cross section(RC/CS), probability that a trapped exciton moves an electron into the electron transport chain beyond Q–(at t=0)(Ψ) and quantum yield of electron transport at t=0(φ) decreased significantly(P<0.05), suggesting that the reaction centre, donor and acceptor side of photosystem II(PSII) were all significantly inhibited(P<0.05) and that the thermal stability of the photosynthetic mechanism was reduced. The inhibition of energy fluxes for senescent leaves in November was earlier and more pronounced than that for healthy leaves, which did not recover from heat stress of more than 15 min after 2 h recovery at room temperature.
基金financially supported by the National Natural Science Foundation of China (31400527, 31501276)the National High-Tech R&D Program of China (2011AA100504)+1 种基金the Project 111 of the Ministry of Education of China (B12007)the Fund of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, China (K318009902-1408)
文摘Plants maintain water balance by varying hydraulic properties, and plasma membrane intrinsic proteins(PIPs) may be involved in this process. Leaf xylem and root hydraulic conductivity and the m RNA contents of four highly expressed Zm PIP genes(Zm PIP1;1, Zm PIP1;2, Zm PIP2;2, and Zm PIP2;5) in maize(Zea mays) seedlings were investigated. Under well-watered conditions, leaf hydraulic conductivity(K_(leaf)) varied diurnally and was correlated with whole-plant hydraulic conductivity. Similar diurnal rhythms of leaf transpiration rate(E), K_(leaf) and root hydraulic conductivity(K_(root)) in well-watered plants are important for maintaining whole-plant water balance. After 2 h of osmotic stress treatment induced by 10% polyethylene glycol 6000, the K_(root) of stressed plants decreased but K_(leaf) increased, compared with well-watered plants. The m RNA contents of four Zm PIPs were significantly up-regulated in the leaves of stressed plants, especially for Zm PIP1;2. Meanwhile, Zm PIP2;5 was significantly down-regulated in the roots of stressed plants. After 4 h of osmotic stress treatment, the E and leaf xylem water potentials of stressed plants unexpectedly increased. The increase in K_(leaf) and a partial recovery of K_(root) may have contributed to this process. The m RNA content of Zm PIP1;2 but not of the other three genes was up-regulated in roots at this time. In summary, the m RNA contents of these four Zm PIPs associated with K_(leaf) and K_(root) change in maize seedlings during short-term osmotic stress, especially for Zm PIP1;2 and Zm PIP2;5, which may help to further reveal the hydraulic resistance adjustment role of Zm PIPs.
基金support from the National Key Research and Development Program of China(No.2022YFE0137400)the National Natural Science Foundation of China(Grant No.62274040).
文摘The past decade has witnessed the rapid increasement in power conversion efficiency of perovskite solar cells(PSCs).However,serious ion migration hampers their operational stability.Although dopants composed of varied cations and anions are introduced into perovskite to suppress ion migration,the impact of cations or anions is not individually explored,which hinders the evaluation of different cations and further application of doping strategy.Here we report that a special group of sulfonic anions(like CF_(3)SO_(3)^(-))successfully introduce alkaline earth ions(like Ca^(2+))into perovskite lattice compared to its halide counterparts.Furthermore,with effective crystallization regulation and defect passivation of sulfonic anions,perovskite with Ca(CF_(3)SO_(3))_(2)shows reduced PbI2 residue and metallic Pb0 defects;thereby,corresponding PSCs show an enhanced PCE of 24.95%.Finally by comparing the properties of perovskite with Ca(CF_(3)SO_(3))_(2)and FACF_(3)SO_(3),we found that doped Ca^(2+)significantly suppressed halide migration with an activation energy of 1.246 eV which accounts for the improved operational stability of Ca(CF_(3)SO_(3))_(2-)doped PSCs,while no obvious impact of Ca^(2+)on trap density is observed.Combining the benefits of cations and anions,this study presents an effective method to decouple the effects of cations and anions and fabricate efficient and stable PSCs.
文摘Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing.
基金Supported by the National Natural Science Foundation of China,No.82072537the General Project of Hunan Natural Science Foundation,No.2022JJ30412 and No.2021JJ30464.
文摘Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions.Exos derived from mesenchymal stem cells(MSCs)have significant immunomodulatory properties.They effectively regulate immune responses by modulating both innate and adaptive immunity.These Exos can inhibit excessive inflammatory responses and promote tissue repair.Moreover,they participate in antigen presentation,which is essential for activating immune responses.The cargo of these Exos,including ligands,proteins,and microRNAs,can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response.By inhibiting lymphocyte proliferation,acting on macrophages,and increasing the population of regulatory T cells,these Exos contribute to maintaining immune and metabolic homeostasis.Furthermore,they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells,which holds potential for immunotherapy applications.Given the immense therapeutic potential of MSC-derived Exos,this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control,tumor suppression,and autoimmune disease management.This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos,offering theoretical references for their future clinical utilization as cell-free drug preparations.
文摘Excellent progress has been made in the last few decades in the cure rates of pediatric malignancies,with more than 80%of children with cancer who have access to contemporary treatment being cured.However,the therapies responsible for this survival can also produce adverse physical and psychological long-term outcomes,referred to as late effects,which appear months to years after the completion of cancer treatment.Research has shown that 60%to 90%of childhood cancer survivors(CCSs)develop one or more chronic health conditions,and 20%to 80%of survivors experience severe or life-threatening complications during adulthood.Therefore,understanding the late side effects of such treatments is important to improve the health and quality of life of the growing population of CCSs.