The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most s...The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].展开更多
This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments. We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial sh...This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments. We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial shifted Legendre moments (3DSRSLMs) and a 3D weighted radial one (3DWRSLMs). Both are centered on two types of polynomials. In the first case, a new 3D ra- dial complex moment is proposed. In the second case, new 3D substituted/weighted radial shifted Legendremoments (3DSRSLMs/3DWRSLMs) are introduced using a spherical representation of volumetric image. 3D invariants as derived from the sug- gested 3D radial shifted Legendre moments will appear in the third case. To confirm the proposed approach, we have resolved three is- sues. To confirm the proposed approach, we have resolved three issues: rotation, scaling and translation invariants. The result of experi- ments shows that the 3DSRSLMs and 3DWRSLMs have done better than the 3D radial complex moments with and without noise. Sim- ultaneously, the reconstruction converges rapidly to the original image using 3D radial 3DSRSLMs and 3DWRSLMs, and the test of 3D images are clearly recognized from a set of images that are available in Princeton shape benchmark (PSB) database for 3D image.展开更多
We investigate the restart of the Restarted Shifted GMRES method for solving shifted linear systems. Recently the variant of the GMRES(m) method with the unfixed update has been proposed to improve the convergence o...We investigate the restart of the Restarted Shifted GMRES method for solving shifted linear systems. Recently the variant of the GMRES(m) method with the unfixed update has been proposed to improve the convergence of the GMRES(m) method for solving linear systems, and shown to have an efficient convergence property. In this paper, by applying the unfixed update to the Restarted Shifted GMRES method, we propose a variant of the Restarted Shifted GMRES method. We show a potentiality for efficient convergence within the variant by some numerical results.展开更多
CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for C...CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However. rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.展开更多
A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequenc...A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequency con-verter is obtained with low switching frequency converter. It is very promising in current-source APF that adopt super-conducting magnetic energy storage component.展开更多
We report a cooling and deceleration experiment of a thermal beam by using a nearly resonant red-shifted diffuse light in an optical integral sphere cavity.By using of this red-shifted diffuse light,the velocity of a ...We report a cooling and deceleration experiment of a thermal beam by using a nearly resonant red-shifted diffuse light in an optical integral sphere cavity.By using of this red-shifted diffuse light,the velocity of a part of thermal sodium atoms is cooled to 380m/s and the velocity width of cooled atoms is about 18m/s.The mechanism of this kind of laser cooling and the experimental results are discussed.展开更多
Multiple phase-shifted(MPS)diffraction grating is an effective way proposed to overcome the spatial hole burning(SHB)effect in a distributed feedback(DFB)laser.We present two symmetric λ/8 phase-shifted DFB lasers by...Multiple phase-shifted(MPS)diffraction grating is an effective way proposed to overcome the spatial hole burning(SHB)effect in a distributed feedback(DFB)laser.We present two symmetric λ/8 phase-shifted DFB lasers by using nanoimprint lithography(NIL).The threshold current of a typical laser is less than 15 mA.The side mode suppression ratio(SMSR)is still above 42 dB even at 100 mA current injection.To show the versatility of NIL,eight different wavelength MPS-DFB lasers on this single chip are also demonstrated.Our results prove that NIL is a promising tool for fabricating high performance complex grating DFB lasers.展开更多
A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which...A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which has two sub transmission gratings with different line densities, of 2000 lines/mm and 5000 lines/mm. The axes of the two sub transmission gratings in SDTG are horizontally and vertically shifted a certain distance to measure a broad range of 0.1-5 keV time-resolved X-ray spectra. The SDTG has been calibrated with a soft X-ray beam of the synchrotron radiation facility and its diffraction efficiency is also measured. The designed SDTGS can take full use of the space on a record panel and improve the precision for measuring spatial and temporal spectrum simultaneously. It will be a promising application for accurate diagnosis of the soft X-ray spectrum in inertial confinement fusion.展开更多
Copy-paste forgery is a very common type of forgery in JPEG images.The tampered patch has always suffered from JPEG compression twice with inconsistent block segmentation.This phenomenon in JPEG image forgeries is cal...Copy-paste forgery is a very common type of forgery in JPEG images.The tampered patch has always suffered from JPEG compression twice with inconsistent block segmentation.This phenomenon in JPEG image forgeries is called the shifted double JPEG(SDJPEG) compression.Detection of SDJPEG compressed image patches can make crucial contribution to detect and locate the tampered region.However,the existing SDJPEG compression tampering detection methods cannot achieve satisfactory results especially when the tampered region is small.In this paper,an effective SDJPEG compression tampering detection method utilizing both intra-block and inter-block correlations is proposed.Statistical artifacts are left by the SDJPEG compression among the magnitudes of JPEG quantized discrete cosine transform(DCT) coefficients.Firstly,difference 2D arrays,which describe the differences between the magnitudes of neighboring JPEG quantized DCT coefficients on the intrablock and inter-block,are used to enhance the SDJPEG compression artifacts.Then,the thresholding technique is used to deal with these difference 2D arrays for reducing computational cost.After that,co-occurrence matrix is used to model these difference 2D arrays so as to take advantage of second-order statistics.All elements of these co-occurrence matrices are served as features for SDJPEG compression tampering detection.Finally,support vector machine(SVM) classifier is employed to distinguish the SDJPEG compressed image patches from the single JPEG compressed image patches using the developed feature set.Experimental results demonstrate the efficiency of the proposed method.展开更多
In traditional analytical method(AM),the magnetic saturation is always ignored to simplify the calculation process.However,synchronous reluctance motors(SynRMs)often operate around saturation point to achieve higher t...In traditional analytical method(AM),the magnetic saturation is always ignored to simplify the calculation process.However,synchronous reluctance motors(SynRMs)often operate around saturation point to achieve higher torque density.Therefore,a new AM is proposed,in which the saturation of stator iron has been considered.The key of the proposed method includes a saturation factor,and an iterative method is adopted to compute the saturation factor in the SynRM by increasing the air-gap length.Especially,the proposed AM can be applied to a SynRM even with shifted-asymmetrical-salient-poles.In the process of AM,the expression of stator magnetomotive force(MMF)is built firstly.Additionally,the air-gap density including slotting effect and salient-poles is calculated.Then,the rotor MMF under saturation of the stator iron is obtained.Therefore,the precision of the instantaneous torque can be improved significantly.Eventually,by the verification of finite elements method(FEM)and experiments,the torque performance of SynRMs with shifted asymmetrical rotor can be predicted accurately by the proposed AM.展开更多
Pilot contamination limits the performance of massive multiple-input multiple-output(MIMO) system severely due to the degraded channel estimation. An efficient way to solve this problem in time division duplex(TDD...Pilot contamination limits the performance of massive multiple-input multiple-output(MIMO) system severely due to the degraded channel estimation. An efficient way to solve this problem in time division duplex(TDD) wireless system is shifting the location of pilots in time frames used in neighboring cells. However, the shifted frame structure has only been studied in MIMO system with the ideal independent and identically distributed(i.i.d.) channel coefficients. In this paper, the shifted frame structure is studied in a measured channel with a large number of antennas for a certain class of channel fading statistics. To deal with the high inter-cell interference caused by the shifted frame structure in such a measured channel condition, we propose a scenario with a covariance-aided channel estimator. This scenario shows that pilot contamination can be solved and the high inter-cell interference can be made to vanish asymptotically with the number of antennas. The key of the interference rejection is obtaining the precise condition on the second order statistics for the desired and interference signals. The most significant information of the second order statistics comes from two parts, one is the channel state information(CSI) among the base stations(BSs), the other comes from the estimated information exchanged by the BSs, which depicts the channel between the BSs and the users. The simulations give powerful results of the interference rejection and the achievable rate promotion.展开更多
In this paper,the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of threedimensional multi-term fractional-order PDEs wit...In this paper,the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of threedimensional multi-term fractional-order PDEs with variable coefficients.The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem.The approximate solutions of nonlinear fractional PDEs with variable coefficients thus obtained by threevariable shifted Jacobi polynomials are compared with the exact solutions.Furthermore some theorems and lemmas are introduced to verify the convergence results of our algorithm.Lastly,several numerical examples are presented to test the superiority and efficiency of the proposed method.展开更多
The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG meth...The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG method is an effective method for symmetric coefficient matrices A (i). In this paper, the FOM method is employed to solve multiple linear sy stems when coefficient matrices are non-symmetric matrices. One of the systems is selected as the seed system which generates a Krylov subspace, then the resi duals of other systems are projected onto the generated Krylov subspace to get t he approximate solutions for the unsolved ones. The whole process is repeated u ntil all the systems are solved.展开更多
An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D...An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D)shifted lattice model is proposed,therefore a shifted lattice model is introduced into D3Q25.Under the finite volume scheme,several typical compressible calculation examples are used to verify whether the numerical stability of the D3Q25 model can be improved by adding the shifted lattice model.The simulation results show that the numerical stability is indeed improved after adding the shifted lattice model.展开更多
In this manuscript,an algorithm for the computation of numerical solutions to some variable order fractional differential equations(FDEs)subject to the boundary and initial conditions is developed.We use shifted Legen...In this manuscript,an algorithm for the computation of numerical solutions to some variable order fractional differential equations(FDEs)subject to the boundary and initial conditions is developed.We use shifted Legendre polynomials for the required numerical algorithm to develop some operational matrices.Further,operational matrices are constructed using variable order differentiation and integration.We are finding the operationalmatrices of variable order differentiation and integration by omitting the discretization of data.With the help of aforesaid matrices,considered FDEs are converted to algebraic equations of Sylvester type.Finally,the algebraic equations we get are solved with the help of mathematical software like Matlab or Mathematica to compute numerical solutions.Some examples are given to check the proposed method’s accuracy and graphical representations.Exact and numerical solutions are also compared in the paper for some examples.The efficiency of the method can be enhanced further by increasing the scale level.展开更多
Reciprocal transformations of the space-time shifted nonlocal short pulse equations are elaborated.Covariance of dependent and independent variables involved in the reciprocal transformations is investigated.Exact sol...Reciprocal transformations of the space-time shifted nonlocal short pulse equations are elaborated.Covariance of dependent and independent variables involved in the reciprocal transformations is investigated.Exact solutions of the space-time shifted nonlocal short pulse equations are given in terms of double Wronskians.Realness of independent variables involved in the reciprocal transformations is verified.Dynamics of some obtained solutions are illustrated.展开更多
In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter u...In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter using a simple auxiliary circuit was designed. The ZVZCS soft switch is achieved by the resonance among the resisting electromagnetic deflection capacitor, the capacitor of the simple auxiliary network and the leakage inductor of transformer. There are no dissipation devices of the saturation inductor and the auxiliary switch in the converter, meantime the capacitor of the auxiliary circuit is also used to clamp the voltage of the rectifier, and there is no additional clamped circuit. There is no big circulating current in the converter, all the active and passive devices work on the condition of the low current and voltage stress, and the proposed converter has wide load range and small duty loss.展开更多
By applying continuity and boundary conditions, the reflection and transmission coefficients of one- dimensional time-independent Schr6dinger equation with a symmetric barrier-type shifted Deng-Fan potential are ob- t...By applying continuity and boundary conditions, the reflection and transmission coefficients of one- dimensional time-independent Schr6dinger equation with a symmetric barrier-type shifted Deng-Fan potential are ob- tained and discussed. The numerical and graphical results are very sufficient, accurate and consistent with the conser- vation of probability.展开更多
基金financial support from the National Key R&D Program of China(2021YFB3500700)the National Natural Science Foundation of China(22473042,22003016,and 92145302).
文摘The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].
文摘This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments. We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial shifted Legendre moments (3DSRSLMs) and a 3D weighted radial one (3DWRSLMs). Both are centered on two types of polynomials. In the first case, a new 3D ra- dial complex moment is proposed. In the second case, new 3D substituted/weighted radial shifted Legendremoments (3DSRSLMs/3DWRSLMs) are introduced using a spherical representation of volumetric image. 3D invariants as derived from the sug- gested 3D radial shifted Legendre moments will appear in the third case. To confirm the proposed approach, we have resolved three is- sues. To confirm the proposed approach, we have resolved three issues: rotation, scaling and translation invariants. The result of experi- ments shows that the 3DSRSLMs and 3DWRSLMs have done better than the 3D radial complex moments with and without noise. Sim- ultaneously, the reconstruction converges rapidly to the original image using 3D radial 3DSRSLMs and 3DWRSLMs, and the test of 3D images are clearly recognized from a set of images that are available in Princeton shape benchmark (PSB) database for 3D image.
基金Supported by the Strategic Programs for Innovative Research(SPIRE)Field5"The origin of matter and the universe"
文摘We investigate the restart of the Restarted Shifted GMRES method for solving shifted linear systems. Recently the variant of the GMRES(m) method with the unfixed update has been proposed to improve the convergence of the GMRES(m) method for solving linear systems, and shown to have an efficient convergence property. In this paper, by applying the unfixed update to the Restarted Shifted GMRES method, we propose a variant of the Restarted Shifted GMRES method. We show a potentiality for efficient convergence within the variant by some numerical results.
基金the National Natural Science Foundation of China(Grant No.51176051 and 51106054)the National Basic Research Program of China(973 Program,No.2009CB219504-03)
文摘CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However. rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.
文摘A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequency con-verter is obtained with low switching frequency converter. It is very promising in current-source APF that adopt super-conducting magnetic energy storage component.
文摘We report a cooling and deceleration experiment of a thermal beam by using a nearly resonant red-shifted diffuse light in an optical integral sphere cavity.By using of this red-shifted diffuse light,the velocity of a part of thermal sodium atoms is cooled to 380m/s and the velocity width of cooled atoms is about 18m/s.The mechanism of this kind of laser cooling and the experimental results are discussed.
基金the National Natural Science Foundation of China under Grant Nos 11044009,A040507,61076042 and 60607006the Special Project on Development of National Key Scientific Instruments and Equipment of China under Grant No 2011YQ16000205+2 种基金the National Key Technology R&D Program of China under Grant No 2009BAH49B01the National High-Technology Research and Development Program of China under Grant Nos 2011AA010304 and 2011AA03A106the Science and Technology Special Project in Hubei Province under Grant No 2009AAA009.
文摘Multiple phase-shifted(MPS)diffraction grating is an effective way proposed to overcome the spatial hole burning(SHB)effect in a distributed feedback(DFB)laser.We present two symmetric λ/8 phase-shifted DFB lasers by using nanoimprint lithography(NIL).The threshold current of a typical laser is less than 15 mA.The side mode suppression ratio(SMSR)is still above 42 dB even at 100 mA current injection.To show the versatility of NIL,eight different wavelength MPS-DFB lasers on this single chip are also demonstrated.Our results prove that NIL is a promising tool for fabricating high performance complex grating DFB lasers.
基金supported by National Natural Science Foundation of China(Nos.11405158 and 11435011)Development Foundation of China Academy of Engineering Physics(Nos.2014B0102011 and 2014B0102012)
文摘A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which has two sub transmission gratings with different line densities, of 2000 lines/mm and 5000 lines/mm. The axes of the two sub transmission gratings in SDTG are horizontally and vertically shifted a certain distance to measure a broad range of 0.1-5 keV time-resolved X-ray spectra. The SDTG has been calibrated with a soft X-ray beam of the synchrotron radiation facility and its diffraction efficiency is also measured. The designed SDTGS can take full use of the space on a record panel and improve the precision for measuring spatial and temporal spectrum simultaneously. It will be a promising application for accurate diagnosis of the soft X-ray spectrum in inertial confinement fusion.
基金the National Natural Science Foundation of China(Nos.61071152 and 61271316)the National Basic Research Program (973) of China (Nos.2010CB731403 and 2010CB731406)the National "Twelfth Five-Year" Plan for Science and Technology Support(No.2012BAH38 B04)
文摘Copy-paste forgery is a very common type of forgery in JPEG images.The tampered patch has always suffered from JPEG compression twice with inconsistent block segmentation.This phenomenon in JPEG image forgeries is called the shifted double JPEG(SDJPEG) compression.Detection of SDJPEG compressed image patches can make crucial contribution to detect and locate the tampered region.However,the existing SDJPEG compression tampering detection methods cannot achieve satisfactory results especially when the tampered region is small.In this paper,an effective SDJPEG compression tampering detection method utilizing both intra-block and inter-block correlations is proposed.Statistical artifacts are left by the SDJPEG compression among the magnitudes of JPEG quantized discrete cosine transform(DCT) coefficients.Firstly,difference 2D arrays,which describe the differences between the magnitudes of neighboring JPEG quantized DCT coefficients on the intrablock and inter-block,are used to enhance the SDJPEG compression artifacts.Then,the thresholding technique is used to deal with these difference 2D arrays for reducing computational cost.After that,co-occurrence matrix is used to model these difference 2D arrays so as to take advantage of second-order statistics.All elements of these co-occurrence matrices are served as features for SDJPEG compression tampering detection.Finally,support vector machine(SVM) classifier is employed to distinguish the SDJPEG compressed image patches from the single JPEG compressed image patches using the developed feature set.Experimental results demonstrate the efficiency of the proposed method.
基金This work was supported in part by the National Natural Science Foundation of China(51707083)in part by the Natural Science Foundation of Jiangsu Province(BK20190848)+1 种基金in part by the China Postdoctoral Science Foundation(2019M661746)by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘In traditional analytical method(AM),the magnetic saturation is always ignored to simplify the calculation process.However,synchronous reluctance motors(SynRMs)often operate around saturation point to achieve higher torque density.Therefore,a new AM is proposed,in which the saturation of stator iron has been considered.The key of the proposed method includes a saturation factor,and an iterative method is adopted to compute the saturation factor in the SynRM by increasing the air-gap length.Especially,the proposed AM can be applied to a SynRM even with shifted-asymmetrical-salient-poles.In the process of AM,the expression of stator magnetomotive force(MMF)is built firstly.Additionally,the air-gap density including slotting effect and salient-poles is calculated.Then,the rotor MMF under saturation of the stator iron is obtained.Therefore,the precision of the instantaneous torque can be improved significantly.Eventually,by the verification of finite elements method(FEM)and experiments,the torque performance of SynRMs with shifted asymmetrical rotor can be predicted accurately by the proposed AM.
文摘Pilot contamination limits the performance of massive multiple-input multiple-output(MIMO) system severely due to the degraded channel estimation. An efficient way to solve this problem in time division duplex(TDD) wireless system is shifting the location of pilots in time frames used in neighboring cells. However, the shifted frame structure has only been studied in MIMO system with the ideal independent and identically distributed(i.i.d.) channel coefficients. In this paper, the shifted frame structure is studied in a measured channel with a large number of antennas for a certain class of channel fading statistics. To deal with the high inter-cell interference caused by the shifted frame structure in such a measured channel condition, we propose a scenario with a covariance-aided channel estimator. This scenario shows that pilot contamination can be solved and the high inter-cell interference can be made to vanish asymptotically with the number of antennas. The key of the interference rejection is obtaining the precise condition on the second order statistics for the desired and interference signals. The most significant information of the second order statistics comes from two parts, one is the channel state information(CSI) among the base stations(BSs), the other comes from the estimated information exchanged by the BSs, which depicts the channel between the BSs and the users. The simulations give powerful results of the interference rejection and the achievable rate promotion.
基金This work was supported by the Collaborative Innovation Center of Taiyuan Heavy Machinery Equipment,Postdoctoral Startup Fund of Taiyuan University of Science and Technology(20152034)the Natural Science Foundation of Shanxi Province(201701D221135)National College Students Innovation and Entrepreneurship Project(201710109003)and(201610109007).
文摘In this paper,the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of threedimensional multi-term fractional-order PDEs with variable coefficients.The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem.The approximate solutions of nonlinear fractional PDEs with variable coefficients thus obtained by threevariable shifted Jacobi polynomials are compared with the exact solutions.Furthermore some theorems and lemmas are introduced to verify the convergence results of our algorithm.Lastly,several numerical examples are presented to test the superiority and efficiency of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271075)
文摘The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG method is an effective method for symmetric coefficient matrices A (i). In this paper, the FOM method is employed to solve multiple linear sy stems when coefficient matrices are non-symmetric matrices. One of the systems is selected as the seed system which generates a Krylov subspace, then the resi duals of other systems are projected onto the generated Krylov subspace to get t he approximate solutions for the unsolved ones. The whole process is repeated u ntil all the systems are solved.
基金the Youth Program of the National Natural Science Foundation of China(Grant Nos.11972272,12072246,and 12202331)the National Key Project,China(Grant No.GJXM92579)the Natural Science Basic Research Program of Shaanxi Province,China(Program No.2022JQ-028)。
文摘An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D)shifted lattice model is proposed,therefore a shifted lattice model is introduced into D3Q25.Under the finite volume scheme,several typical compressible calculation examples are used to verify whether the numerical stability of the D3Q25 model can be improved by adding the shifted lattice model.The simulation results show that the numerical stability is indeed improved after adding the shifted lattice model.
基金Supporting Project No.(PNURSP2022R 14),Princess Nourah bint A bdurahman University,Riyadh,Saudi Arabia.
文摘In this manuscript,an algorithm for the computation of numerical solutions to some variable order fractional differential equations(FDEs)subject to the boundary and initial conditions is developed.We use shifted Legendre polynomials for the required numerical algorithm to develop some operational matrices.Further,operational matrices are constructed using variable order differentiation and integration.We are finding the operationalmatrices of variable order differentiation and integration by omitting the discretization of data.With the help of aforesaid matrices,considered FDEs are converted to algebraic equations of Sylvester type.Finally,the algebraic equations we get are solved with the help of mathematical software like Matlab or Mathematica to compute numerical solutions.Some examples are given to check the proposed method’s accuracy and graphical representations.Exact and numerical solutions are also compared in the paper for some examples.The efficiency of the method can be enhanced further by increasing the scale level.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11875040 and 12171308)
文摘Reciprocal transformations of the space-time shifted nonlocal short pulse equations are elaborated.Covariance of dependent and independent variables involved in the reciprocal transformations is investigated.Exact solutions of the space-time shifted nonlocal short pulse equations are given in terms of double Wronskians.Realness of independent variables involved in the reciprocal transformations is verified.Dynamics of some obtained solutions are illustrated.
文摘In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter using a simple auxiliary circuit was designed. The ZVZCS soft switch is achieved by the resonance among the resisting electromagnetic deflection capacitor, the capacitor of the simple auxiliary network and the leakage inductor of transformer. There are no dissipation devices of the saturation inductor and the auxiliary switch in the converter, meantime the capacitor of the auxiliary circuit is also used to clamp the voltage of the rectifier, and there is no additional clamped circuit. There is no big circulating current in the converter, all the active and passive devices work on the condition of the low current and voltage stress, and the proposed converter has wide load range and small duty loss.
文摘By applying continuity and boundary conditions, the reflection and transmission coefficients of one- dimensional time-independent Schr6dinger equation with a symmetric barrier-type shifted Deng-Fan potential are ob- tained and discussed. The numerical and graphical results are very sufficient, accurate and consistent with the conser- vation of probability.