期刊文献+
共找到135篇文章
< 1 2 7 >
每页显示 20 50 100
Measurement of aerodynamic heating of micro-scale rotational shearing flow and its heat flux identification
1
作者 Yuan LIU Yuanwei LYU +3 位作者 Jingyang ZHANG Chunyang LI Jingzhou ZHANG Zhongwen HUANG 《Chinese Journal of Aeronautics》 2025年第4期70-90,共21页
This study conducted the experimental investigation of aerodynamic heating of Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL).The temperature riseof the stator is captured by the high response ... This study conducted the experimental investigation of aerodynamic heating of Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL).The temperature riseof the stator is captured by the high response thermocouples.The eccentricity ratio and clearanceheight are guaranteed by means of instantaneous trajectory and torsion monitoring of the rotator.The result shows that the maximum temperature rise takes place upstream of the minimum clear-ance height along circumferential direction.The distribution of temperature rise presents asymmet-ric curve along axial direction,and peak value occurs near the dimensionless axial position of-0.18.The effect of aerodynamic heating becomes notable as the rotational speed is larger than3×10^(4)r/min.The effect of end leakage and the viscous dissipation have great impact on temper-ature rise of MRSFALL.More specially,the peak value of temperature rise at dimensionless clear-ance height of 0.0080 is larger than the case at dimensionless clearance height of 0.0044.Furthermore,when the eccentricity ratio is too large,the viscous dissipation is induced,and theadditional temperature rise is achieved.The heat flux identification of shear flow has been realizedby Sequential Function Specification Method(SFSM)and its estimation of thermal load has been given.The heat flux induced by the aerodynamic heating in this study varies from 950 W/m^(2)to1330 W/m^(2). 展开更多
关键词 Micro-scale Rotational shearing flow with Axial Limited-Length(MRSFALL) Hyper-rotate-speed End leakage Aerodynamic heating experimental measurement Heat flux identification
原文传递
Numerical simulation of two-dimensional granular shearing flows and the friction force of a moving slab on the granular media 被引量:3
2
作者 蔡庆东 陈十一 盛晓伟 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期326-331,共6页
This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution fu... This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution function of velocities of particles is Gaussian at the central part, but diverts from Gaussian distribution nearby the wall. The macroscopic stress along the vertical direction has large fluctuation around a constant value, the non-zero average velocity occurs mainly near the moving wall, which forms a shearing zone.. In the shearing movement, the volume of the granular material behaves in a random manner. The equivalent fl'iction coefficient between moving slab and granular material correlates with the moving speed at low velocity, and approaches constant as the velocity is large enough. 展开更多
关键词 granular shearing flow FRICTION molecular dynamics modeling
原文传递
NON-LINEAR WATER WAVES ON SHEARING FLOWS
3
作者 陈耀松 凌国灿 江涛 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第2期97-102,共6页
This article is devoted to the study of the propagations of the non- linear water waves on the shear flows. Assuming μ = kh is small and ε/μ~2 ~ 0 (1), and the base flow is uniformly sheared, the modified Boussine... This article is devoted to the study of the propagations of the non- linear water waves on the shear flows. Assuming μ = kh is small and ε/μ~2 ~ 0 (1), and the base flow is uniformly sheared, the modified Boussinesq equation is obtained. We calculate propagations of the single sohtary wave with vorticity Γ = 0, >0 and <0. The influences of the vorticity are manifested. At the end examples of the interactions of two solitary waves, moving in opposite and the same directions, are given. Besides the phase shift, there also occur second wavelets after head-on collision. 展开更多
关键词 solitary wave shear flow interaction of waves and flows
在线阅读 下载PDF
Experimental Study on Vortex-Induced Vibration of Underwater Manipulator Under Shear Flow
4
作者 Senliang Dai Derong Duan +3 位作者 Xin Liu Huifang Jin Hui Zhang Xuefeng Yang 《哈尔滨工程大学学报(英文版)》 2025年第5期959-969,共11页
The position deviation of the underwater manipulator generated by vortex-induced vibration(VIV)in the shear flow increases relative to that in the uniform flow.Thus,this study established an experimental platform to i... The position deviation of the underwater manipulator generated by vortex-induced vibration(VIV)in the shear flow increases relative to that in the uniform flow.Thus,this study established an experimental platform to investigate the vibration characteristics of the underwater manipulator under shear flow.The vibration response along the manipulator was obtained and compared with that in the uniform flow.Results indicated that the velocity,test height,and flow field were the main factors affecting the VIV of the underwater manipulator.With the increase in the reduced velocity(U_(r)),the dimensionless amplitudes increased rapidly in the in-line(IL)direction with a maximum of 0.13D.The vibration responses in the cross-flow(CF)and IL directions were concentrated at positions 2,3 and positions 1,2,with peak values of 0.46 and 0.54 mm under U_(r)=1.54,respectively.In addition,the vibration frequency increased with the reduction of velocity.The dimensionless dominant frequency in the CF and IL directions varied from 0.39-0.80 and 0.35-0.64,respectively.Moreover,the ratio of the CF and IL directions was close to 1 at a lower U_(r).The standard deviation of displacement initially increased and then decreased as the height of the test location increased.The single peak value of the standard deviation showed that VIV presented a single mode.Compared with the uniform flow,the maximum and average values of VIV displacement increased by 104%and 110%under the shear flow,respectively. 展开更多
关键词 Underwater manipulator Shear flow Vortex-induced vibration Spectral analysis Vibration response
在线阅读 下载PDF
A frictional weakening law of breakable granular flow influenced by shear velocity and normal stress
5
作者 Zhenyu Liu Lijun Su +2 位作者 Bingli Hu Yiding Bao Bo Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6344-6361,共18页
Rock avalanches frequently lead to catastrophic consequences due to their unpredictably high mobility.Numerous researchers have studied the shear behavior of granular materials under various conditions,attributing the... Rock avalanches frequently lead to catastrophic consequences due to their unpredictably high mobility.Numerous researchers have studied the shear behavior of granular materials under various conditions,attributing the high mobility to ultralow resistance.However,the underlying physical mechanism of frictional weakening remains unclear.This study utilizes the discrete element method(DEM)incorporating the fragment replacement model to simulate plane shear flows under various normal stresses(0.2 e1.2 MPa)and shear velocities(0.01e2 m/s).The findings reveal a localized shear band characterized by a J-shaped velocity profile and high granular temperature,and a concentrated distribution of weak contact forces forms at a shear velocity exceeding 0.1 m/s and normal stress above 0.6 MPa.Moreover,frictional weakening is observed with increasing normal stress from 0.2 MPa to 1.2 MPa and increasing shear velocity from 0.1 m/s to 2 m/s.The evolution of the steady-state friction coefficient can be divided into two stages:an initial stage(I)and a weakening stage(II).During stage I,the steady-state friction coefficient slightly increases until reaching a peak value.However,upon entering stage II,it gradually decreases and approaches an ultimate value.The velocity-and normal stress-dependent frictional weakening can be attributed to shear localization and embedded packing structure induced by particle breakage,respectively.Finally,an optimized m(I)model is proposed to capture the full evolution of the friction coefficient with the shear strain rate,which can improve our understanding of rock avalanche dynamics. 展开更多
关键词 Plane shear flow Discrete element method(DEM) Frictional weakening Shear localization Particle breakage
在线阅读 下载PDF
Investigation of high rate mechanical flow followed by ignition for high-energy propellant under dynamic extrusion loading
6
作者 Liying Dong Yanqing Wu +1 位作者 Kun Yang Xiao Hou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期336-347,共12页
Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism... Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism and conditions of unwanted ignition inside charged propellant under accident stimulus.Secondly, evaluates the risk of a shell crevice in a solid rocket motor(SRM) under a falling or overturning scene. In the present study, an innovative visual crevice extrusion experiment is designed using a dropweight apparatus. The dynamic responses of NEPE propellant during extrusion loading, including compaction and compression, rapid shear flow into the crevice, stress concentration, and ignition reaction, have been firstly observed using a high-performance high-speed camera. The ignition reaction is observed in the triangular region of the NEPE propellant sample above the crevice when the drop weight velocity was 1.90 m/s. Based on the user material subroutine interface UMAT provided by finite element software LS-DYNA, a viscoelastic-plastic model and dual ignition criterion related to plastic shear dissipation are developed and applied to the local ignition response analysis under crevice extrusion conditions. The stress concentration occurs in the crevice location of the propellant sample, the shear stress is relatively large, the effective plastic work is relatively large, and the ignition reaction is easy to occur. When the sample thickness decreases from 5 mm to 2.5 mm, the shear stress increases from 22.3 MPa to 28.6 MPa, the critical value of effective plastic work required for ignition is shortened from 1280 μs to 730 μs, and the triangular area is easily triggering an ignition reaction. The propellant sample with a small thickness is more likely to stress concentration, resulting in large shear stress and effective work, triggering an ignition reaction. 展开更多
关键词 NEPE propellant Crevice extrusion Shear flow Sample thickness Ignition reaction
在线阅读 下载PDF
A CLOSED SYSTEM OF EQUATIONS FOR DENSE TWO-PHASE FLOW AND EXPRESSIONS OF SHEARING STRESS OF DISPERSED PHA’E AT A WALL
7
作者 林多敏 蔡树棠 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第8期679-687,共9页
Inthis paper, each of the two phases in dense two-phase flow is considered as continuous medium and the fundamental equations for two-phase flow arc described in Eulerian form. The generalized constitutive relation of... Inthis paper, each of the two phases in dense two-phase flow is considered as continuous medium and the fundamental equations for two-phase flow arc described in Eulerian form. The generalized constitutive relation of the Bingham fluid is applied to the dispersed phase with the analysis oj physical mechanism of dense two-phase flow. The shearing stress of dispersed phase at a wall is used to give a boundary condition. Then a mathematical model for dense two-phase flow is obtained. In addition, the expressions of shearing stress of dispersed phase at a wall is derived according to the fundamental model of the friclional collision between dispersed-plutse particles and the wall. 展开更多
关键词 E AT A WALL A CLOSED SYSTEM OF EQUATIONS FOR DENSE TWO-PHASE flow AND EXPRESSIONS OF shearing STRESS OF DISPERSED PHA
在线阅读 下载PDF
THE NONLINEAR STABILITY OF PLANE PARALLEL SHEAR FLOWS WITH RESPECT TO TILTED PERTURBATIONS
8
作者 许兰喜 关芳芳 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1036-1045,共10页
The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direc... The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise. 展开更多
关键词 plane parallel shear flows energy method energy functional nonlinear stability Reynolds number
在线阅读 下载PDF
EXPERIMENTAL STUDY ON COHERENT VORTEX STRUCTURES IN DIFFERENTIALLY ROTATING QUASI TWO DIMENSIONAL ZONAL FLOW
9
作者 何钰泉 梁宝社 刘书声 《Transactions of Tianjin University》 EI CAS 1998年第2期86-89,共4页
An experimental system for forming a rotating paraboloid shaped shallow water with a free surface was conducted to study coherent vortex structures in a differentially rotating quasi two dimensional zonal flow.Flow... An experimental system for forming a rotating paraboloid shaped shallow water with a free surface was conducted to study coherent vortex structures in a differentially rotating quasi two dimensional zonal flow.Flow visualization and laser light scattering techniques were used to obtain the information of spatial flow patterns.Experimental results show that the coexistence of Coriolis effect and strong shear in latitudinal zones may lead to formation of coherent vortices.Power spectra analysis and photographs which were taken in a reference frame rotating with the observed vortices also justified the emergence,drift and evolution of persistent vortices on the large scale.Locked vortex state manifests the cyclone and anticyclone asymmetry. 展开更多
关键词 coherent structure rotating shallow water shear flow
在线阅读 下载PDF
Effect of the confinement on two-dimensional complex plasmas with the shear force
10
作者 Haoyu Qi Yang Liu +3 位作者 Shaohuang Bian Runing Liang Dan Zhang Feng Huang 《Chinese Physics B》 2025年第10期459-464,共6页
Langevin molecular dynamics simulations reveal the impact of confinement strength on the structure and dynamics of a two-dimensional complex plasma under constant shear force.Structural analysis via Voronoi diagrams a... Langevin molecular dynamics simulations reveal the impact of confinement strength on the structure and dynamics of a two-dimensional complex plasma under constant shear force.Structural analysis via Voronoi diagrams and the local bond-order parameter|Ψ6|shows that stronger confinement enhances hexagonal order and mitigates shear-induced disorder.Dynamical properties,determined by mean-square displacement(MSD)and the velocity autocorrelation function(VACF),indicate that the shear-induced superdiffusion weakens with increasing confinement strength.The entropy change(?S)shows that strong confinement(ω>1)balances particle dynamics between shear and shear-free regions,thereby stabilizing the system.These findings highlight the interplay between confinement and shear force. 展开更多
关键词 complex plasmas steady shear flow Langevin dynamics simulation CONFINEMENT
原文传递
Liquid–Vapor phase separation under shear by a pseudopotential lattice Boltzmann method
11
作者 Chuandong Lin Sisi Shen +2 位作者 Shuange Wang Guoxing Hou Linlin Fei 《Communications in Theoretical Physics》 2025年第7期193-206,共14页
In this paper,the liquid–vapor phase separation under viscous shear is investigated by using a pseudopotential central moment lattice Boltzmann method.Physically,the multiphase shear flow is governed by two competing... In this paper,the liquid–vapor phase separation under viscous shear is investigated by using a pseudopotential central moment lattice Boltzmann method.Physically,the multiphase shear flow is governed by two competing mechanisms:surface tension and shear force.It is interesting to find that the liquid tends to form a droplet when the surface tension dominates under conditions of low temperature,shear velocity,and viscosity,and in larger domain size.Otherwise,the liquid tends to form a band if shear force dominates.Moreover,the average density gradient is used as a physical criterion to distinguish the spinodal decomposition and domain growth.Both spatial and temporal changes of density are studied during the phase separation under shear. 展开更多
关键词 phase separation multiphase flow shear flow lattice Boltzmann method
原文传递
Cluster globally,model locally:clusterwise modeling of nonlinear dynamics
12
作者 Nan Deng Bernd R.Noack +2 位作者 Luc R.Pastur Guy Y.Cornejo Maceda Chang Hou 《Acta Mechanica Sinica》 2025年第8期45-64,共20页
Data-driven reduced-order modeling opens new avenues of understanding,predicting,controlling,and optimizing system behavior.Simple systems may have state spaces in which sparse human-interpretable dynamical systems ca... Data-driven reduced-order modeling opens new avenues of understanding,predicting,controlling,and optimizing system behavior.Simple systems may have state spaces in which sparse human-interpretable dynamical systems can be identified.This approach has been pioneered by Brunton et al.(2016,PNAS)with sparse identification of nonlinear dynamics.Complex systems,however,cannot be expected to benefit from such simple analytical descriptions.Yet,smoothness may be exploited by analytical local descriptions.In this paper,we identify a clusterwise polynomial dynamics from time-resolved snapshot data.The full state space is partitioned into clusters with a reduced-order polynomial description for each cluster and a global patching strategy.The resulting clusterwise modeling is entirely data-driven and requires no prior knowledge of the system dynamics.We illustrate the approach on the well-known chaotic Lorenz and Rössler systems,on the more challenging chaotic fluid flow dynamics of higher state-space dimensions,on a noisy electrocardiogram signal,and finally on the time evolution of the monthly sunspot number.Clusterwise modeling offers a powerful and interpretable paradigm for dynamical modeling.Nonlinear dynamics can be approximated by assembling many simple local models of different resolutions,opening new paths to understand and control intricate nonlinearities. 展开更多
关键词 Nonlinear dynamics Reduced-order modeling System identification CLUSTERING Shear flow
原文传递
Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow 被引量:5
13
作者 ZHU Hong-jun LIN Peng-zhi 《China Ocean Engineering》 SCIE EI CSCD 2018年第3期301-311,共11页
A series of fully three-dimensional(3 D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185–1015. The numerical results obtained by the... A series of fully three-dimensional(3 D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185–1015. The numerical results obtained by the two-way fluid–structure interaction(FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline(IL) and crossflow(CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean-square(RMS) amplitude and the relatively chaotic trajectories. The fluid–structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3 D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3 D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses. 展开更多
关键词 vortex-induced vibration flexible riser shear flow fluid–structure interaction computational fluid dynamics
在线阅读 下载PDF
Shear flow induced vibrations of long slender cylinders with a wake oscillator model 被引量:4
14
作者 Fei Ge Wei Lu Lei Wang You-Shi Hong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第3期330-338,共9页
A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They a... A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations(VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions. The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fiuid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model,such as the spanwise average displacement,vibration frequency,dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior. 展开更多
关键词 Vortex-induced vibration Vortex-induced wave Shear flow Wake oscillator Long slender cylinder
在线阅读 下载PDF
Numerical simulation of steady flow past a liquid sphere immersed in simple shear flow at low and moderate Re 被引量:4
15
作者 李润 张敬升 +2 位作者 雍玉梅 汪洋 杨超 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第1期15-21,共7页
This work presents a numerical investigation on steady internal, external and surface flows of a liquid sphere immersed in a simple shear flow at low and intermediate Reynolds numbers. The control volume formulation i... This work presents a numerical investigation on steady internal, external and surface flows of a liquid sphere immersed in a simple shear flow at low and intermediate Reynolds numbers. The control volume formulation is adopted to solve the governing equations of two-phase flow in a 3-D spherical coordinate system. Numerical results show that the streamlines for Re = 0 are closed Jeffery orbits on the surface of the liquid sphere, and also closed curves outside and inside the liquid sphere. However, the streamlines have intricate and non-closed structures for Re ≠ 0. The flow structure is dependent on the values of Reynolds number and interior-to-exterior viscosity ratio. 展开更多
关键词 Shear flow Liquid sphere Numerical simulation STREAMLINE Jeffery orbit
在线阅读 下载PDF
An application of interacting shear flows theory: exact solution for unsteady oblique stagnation point flow 被引量:4
16
作者 Guibo Li Minguo Dai Z. Gao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第5期397-402,共6页
An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS... An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented. 展开更多
关键词 Navier-Stokes equations Interacting shear flows Unsteady oblique stagnation point flow Exact solution
在线阅读 下载PDF
Particle dynamics in dense shear granular flow 被引量:8
17
作者 Dengming Wang Youhe Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第1期91-100,共10页
The particle dynamics in an annular shear granular flow is studied using the discrete element method, and the influences of packing fraction, shear rate and friction coefficient are analyzed. We demonstrate the existe... The particle dynamics in an annular shear granular flow is studied using the discrete element method, and the influences of packing fraction, shear rate and friction coefficient are analyzed. We demonstrate the existence of a critical packing fraction exists in the shear granular flow. When the packing fraction is lower than this critical value, the mean tangential velocity profile exhibits a rate-independent feature. However, when the packing fraction exceeds this critical value, the tangential velocity profile becomes rate-dependent and varies gradually from linear to nonlinear with increasing shear rate. Furthermore, we find a continuous transition from the unjammed state to the jammed state in a shear granular flow as the packing fraction increases. In this transforming process, the force distribution varies distinctly and the contact force network also exhibits different features. 展开更多
关键词 Shear granular flow - Tangential velocity profile Critical packing fraction Force distribution - Jammed state
在线阅读 下载PDF
LES prediction of space-time correlations in turbulent shear flows 被引量:4
18
作者 Li Guo Dong Li +1 位作者 Xing Zhang Guo-Wei He 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第4期993-998,共6页
We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-visco... We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-viscosity subgrid scale (SGS) model over-predicts the space-time corre- lations than the DNS. The overpredictions are further quantified by the integral scales of directional correlations and convection velocities. A physical argument for the overpre- diction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions. This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows. It suggests that enstrophy is crucial to the LES prediction of spacetime correlations. The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations. 展开更多
关键词 Large-eddy simulation Subgrid scale model Space-time correlation Turbulent shear flows
在线阅读 下载PDF
Rarefied gas effect in hypersonic shear flows 被引量:3
19
作者 Jie Chen Heng Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第1期2-17,I0002,共17页
Recently,as aerodynamics was applied to flying vehicles with very high speed and flying at high altitude,the numerical simulation based on the Navier-Stokes(NS)equations was found that cannot correctly predict certain... Recently,as aerodynamics was applied to flying vehicles with very high speed and flying at high altitude,the numerical simulation based on the Navier-Stokes(NS)equations was found that cannot correctly predict certain aero-thermo-dynamic properties in a certain range of velocity and altitude while the Knudsen number indicates that the flow is still in the continuum regime.As first noted by Zhou and Zhang(Science in China,2015),the invalidity of NS equations for such flows might be attributed to an non-equilibrium effect originating from the combined effects of gas rarefaction and strong shear in the boundary-layer flows.In this paper,we present the scope,physical concept,mathematical model of this shear non-equilibrium effect in hypersonic flows,as well as the way of considering this effect in conventional computational fluid mechanics(CFD)for engineering applications.Several hypersonic flows over sharp bodies and blunt bodies are analyzed by the proposed new continuum model,named direct simulation Monte Carlo(DSMC)data-improved Navier-Stokes(DiNS)model. 展开更多
关键词 Rarefied gas effect Hypersonic shear flow Aerodynamics properties Direct simulation Monte Carlo Continuum model
原文传递
Effects of chain stiffness and shear flow on nanoparticle dispersion and distribution in ring polymer melts 被引量:2
20
作者 Dan WANG Feng-qing LI +2 位作者 Xiang-hong WANG Shi-ben LI Lin-li HE 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第3期229-239,共11页
The dispersion behavior and spatial distribution of nanoparticles(NPs)in ring polymer melts are explored by using molecular dynamics(MD)simulations.As polymer-NP interactions increase,three general categories of polym... The dispersion behavior and spatial distribution of nanoparticles(NPs)in ring polymer melts are explored by using molecular dynamics(MD)simulations.As polymer-NP interactions increase,three general categories of polymer-mediated NP organization are observed,namely,contact aggregation,bridging,and steric dispersion,consistent with the results of equivalent linear ones in previous studies.In the case of direct contact aggregation among NPs,the explicit aggregation-dispersion transition of NPs in ring polymer melts can be induced by increasing the chain stiffness or applying a steady shear flow.Results further indicate that NPs can achieve an optimal dispersed state with the appropriate chain stiffness and shear flow.Moreover,shear flow cannot only improve the dispersion of NPs in ring polymer melts but also control the spatial distribution of NPs into a well-ordered structure.This improvement becomes more evident under stronger polymer-NP interactions.The observed induced-dispersion or ordered distribution of NPs may provide efficient access to the design and manufacture of high-performance polymer nanocomposites(PNCs). 展开更多
关键词 Ring polymer NANOCOMPOSITES Chain stiffness Shear flow Molecular dynamics(MD)
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部