The Louzidian ductile shear zone at the south of Chifeng strikes NE-SW and dips SE at low-medium- angles. This ductile shear zone is mainly composed of granitic mylonite, which grades structurally upward into a chlori...The Louzidian ductile shear zone at the south of Chifeng strikes NE-SW and dips SE at low-medium- angles. This ductile shear zone is mainly composed of granitic mylonite, which grades structurally upward into a chloritized zone, a microbreccia zone, a brittle fault and a gouge zone. All these zones share similar planar attitudes, but contain different linear attitudes and kinematic indicators. Finite strain measurements were performed on feldspar porphyroclasts using the Fry method. These meas- urements yield Fulin indexes of 1.25―3.30, Lode's parameters of -0.535―-0.112 and strain parameters of 0.41―0.75 for the protomylonite, respectively. These data are plotted within the apparent constric- tional field in Fulin and Hossack diagrams. In contrast, for the mylonite, corresponding parameters are 0.99―1.43, -0.176―-0.004 and 0.63―0.82, respectively, and located in the apparent constrictional field close to the plane strain. The mean kinematic vorticity numbers of the protomylonite and mylonite by using three methods of polar Mohr circle, porphyroclast hyperbolic and oblique foliation, are in the range of 0.67―0.95, suggesting that the ductile shearing is accommodated by general shearing that is dominated by simple shear. Combination of the finite strain and kinematic vorticity indicates that shear type was lengthening shear and resulted in L-tectonite at the initial stage of deformation and the shear type gradually changed into lengthening-thinning shear and produced L-S-tectonite with the uplifting of the shear zone and accumulating of strain. These kinds of shear types only produce a/ab strain facies, so the lineation in the ductile shear zone could not deflect 90° in the progressively deformation.展开更多
As viewed from space remote-sensing images (e.g. Google Earth images) of South Guizhou and North Guangxi, the authors found that macroscopic karst landscape on the Earth's surface is strongly controlled by the Conj...As viewed from space remote-sensing images (e.g. Google Earth images) of South Guizhou and North Guangxi, the authors found that macroscopic karst landscape on the Earth's surface is strongly controlled by the Conjugated shear joint of "X" type. Joints of this kind constitute a huge infiltration network and act as channel-ways for the permeation of meteoric waters from the surface, thus, leading to the dissolution of carbonate rocks nearby. As a result, the karst landscape is formed, which is dominated by linear karst valleys. An "X" karst valley network structure appears in the area where horizontal strata are distributed, and a feather-like network structure appears in the area where vertical strata are distributed, respectively. When the water permeates downwards to the underground-water level, it will flow horizontally along the strike of "X" joints toward the local base level of erosion to form an "X" network system of underground conduits in the area where horizontal strata are distributed, but it is relatively complex, because of the joining of other joints. This is the first time we have made use of Google Earth images to study the karst environment. Therefore, it has been successful in research on the Earth's geomorphology, which could only rely on aerial photos and satellite photos in the past. Google Earth images provide low-cost and applicable imaging materials for the study of Earth's geomorphology and karst rocky desertification and its control.展开更多
We investigate the beam focusing technology of shear-vertical(SV) waves for a contact-type linear phased array to overcome the shortcomings of conventional wedge transducer arrays. The numerical simulation reveals the...We investigate the beam focusing technology of shear-vertical(SV) waves for a contact-type linear phased array to overcome the shortcomings of conventional wedge transducer arrays. The numerical simulation reveals the transient excitation and propagation characteristics of SV waves. It is found that the element size plays an important role in determining the transient radiation directivity of SV waves. The transient beam focusing characteristics of SV waves for various array parameters are deeply studied. It is particularly interesting to see that smaller element width will provide the focused beam of SV waves with higher quality, while larger element width may result in erratic fluctuation of focusing energy around the focal point. There exists a specific range of inter-element spacing for optimum focusing performance. Moreover, good beam focusing performance of SV waves can be achieved only at high steering angles.展开更多
Shear zone hosted gold deposits in China can be divided into four types: ductile,brittle ductile,ductile brittle and brittle, of which the ductile and brittle types are the basic ones. All these types of gold deposits...Shear zone hosted gold deposits in China can be divided into four types: ductile,brittle ductile,ductile brittle and brittle, of which the ductile and brittle types are the basic ones. All these types of gold deposits have their own geochemical characteristics. The Hetai gold deposit in Guangdong Province, for example, is a mylonite type gold deposit in a ductile shear zone. With increasing mylonitization, obvious changes took place in trace elements in minerals and rocks, enriching gold and mineralizing elements. The S and Pb isotope data indicated that the ore forming materials were derived from the strata. Hydrogen and oxygen isotopic and fluid inclusion studies also implied that the ore forming fluid was much closer to meteoric water from the early to the late ore forming stage. The Linglong gold deposit, Shangdong Province, is a quartz\|type gold deposit in a brittle shear zone. Changes in rocks, minerals and trace elements occurred in the process of formation of gold quartz veins, and the analytical results of S, Pb, H and O isotopes showed that ore deposition is connected not only with the Jiaodong Group, but also with anatexic granites.展开更多
The G. Abu Garadi area is covered mainly by metasediments, alkali feldspar granites and stream sediments. The alkali feldspar granite is traversed by a major strike-slip fault trending in an N-S direction as well as t...The G. Abu Garadi area is covered mainly by metasediments, alkali feldspar granites and stream sediments. The alkali feldspar granite is traversed by a major strike-slip fault trending in an N-S direction as well as two subordinate sets of faults trending NW to WNW for the first one and NE for the second one. These faults represent the shear zones affected by magmatic (syngenetic) as well as hydrothermal (epigenetic) activities causing alteration of the granitic rocks. The most common alteration features are albitization, greisenization and koalinitization. The mass balance calculations of the studied altered samples show enrichments in Zr, Y, Ni, U, Th and Ga and depletions in Zn, Sr, Nb, Ba, Pb, Cu and V. Only the greisenized samples exhibit a significant enrichment in Nb, ∑REE budget and pronounced lanthanide tetrad effect (M-type), especially TE1,4, while weakly expressed tetrad effects are for the other albitized and koalinitized samples. Mineralogically, the common accessory minerals in the altered samples include samarskite-(Y), betafite, uranothorite, zircon, fluorite and cassiterite. The greisenized granites contain high eU and eTh than the other altered types, where they are characterized by an assemblage of the radioactive minerals; samarskite-(Y), betafite, uranothorite in addition to zircon. The inter-element relationships between U and Th and also their ratios illustrate that the radioelement distribution in these granites is mainly governed by magmatic processes, in addition to post-magmatic ones. The distribution of chemical elements and the fractionation of some isovalents within the shear zone are largely controlled by the newly formed mineral phases. With respect to uranium mobilization, uranium migrated from the host alkali feldspar granites of G. Abu Garadi, while the shear zones acted as traps for the migrated uranium. Moreover, U migrated in the shear zone during greisenization and albitization, and migrated out during koalinitization.展开更多
A three-dimensional model of near-surface shear-wave velocity in the deep alluvial basin underlying the metropolitan area of Las Vegas, Nevada (USA), is being developed for earthquake site response projections. The ...A three-dimensional model of near-surface shear-wave velocity in the deep alluvial basin underlying the metropolitan area of Las Vegas, Nevada (USA), is being developed for earthquake site response projections. The velocity dataset, which includes 230 measurements, is interpolated across the model using depth-dependent correlations of velocity with sediment type. The sediment-type database contains more than 1 400 well and borehole logs. Sediment sequences reported in logs are assigned to one of four units. A characteristic shear-wave velocity profile is developed for each unit by analyzing closely spaced pairs of velocity profiles and well or borehole logs. The resulting velocity model exhibits reasonable values and patterns, although it does not explicitly honor the measured shear-wave velocity profiles. Site response investigations that applied a preliminary version of the velocity model support a two-zone ground-shaking hazard model for the valley. Areas in which clay predominates in the upper 30 m are predicted to have stronger ground motions than the rest of the basin.展开更多
: The kinematic vorticity number and strain of the mylonitic zone related to the detachment fault increase from ESE to WNW along the moving direction of the upper plate of the Xiaoqinling metamorphic core complex (XMC...: The kinematic vorticity number and strain of the mylonitic zone related to the detachment fault increase from ESE to WNW along the moving direction of the upper plate of the Xiaoqinling metamorphic core complex (XMCC) and the geometry of quartz c-axis fabrics changes progressively from crossed girdles to single girdles in the same direction. Therefore, pure shear is dominant in the ESE part of the XMCC while simple shear becomes increasingly important towards WNW. However, the shear type does not change with the strain across the shear zone, thus the variation of shear type is of significance in indicating the formation mechanism. The granitic plutons within the XMCC came from the deep source and their emplacement was an active and forceful upwelling prior to the detachment faulting. The PTt path demonstrates that magmatism is an important cause for the formation of the XMCC. The formation mechanism of the XMCC is supposed to be active plutonism and passive detachment. Crustal thickening and magmatic doming caused necking extension with pure shear, and magmatic heating and doming resulted in detachment extension with simple shear and formed the XMCC.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40102017, 40572123 and the 40472101)Doctoral Programme of Higher Educa-tion (Grant No. 2000000128)
文摘The Louzidian ductile shear zone at the south of Chifeng strikes NE-SW and dips SE at low-medium- angles. This ductile shear zone is mainly composed of granitic mylonite, which grades structurally upward into a chloritized zone, a microbreccia zone, a brittle fault and a gouge zone. All these zones share similar planar attitudes, but contain different linear attitudes and kinematic indicators. Finite strain measurements were performed on feldspar porphyroclasts using the Fry method. These meas- urements yield Fulin indexes of 1.25―3.30, Lode's parameters of -0.535―-0.112 and strain parameters of 0.41―0.75 for the protomylonite, respectively. These data are plotted within the apparent constric- tional field in Fulin and Hossack diagrams. In contrast, for the mylonite, corresponding parameters are 0.99―1.43, -0.176―-0.004 and 0.63―0.82, respectively, and located in the apparent constrictional field close to the plane strain. The mean kinematic vorticity numbers of the protomylonite and mylonite by using three methods of polar Mohr circle, porphyroclast hyperbolic and oblique foliation, are in the range of 0.67―0.95, suggesting that the ductile shearing is accommodated by general shearing that is dominated by simple shear. Combination of the finite strain and kinematic vorticity indicates that shear type was lengthening shear and resulted in L-tectonite at the initial stage of deformation and the shear type gradually changed into lengthening-thinning shear and produced L-S-tectonite with the uplifting of the shear zone and accumulating of strain. These kinds of shear types only produce a/ab strain facies, so the lineation in the ductile shear zone could not deflect 90° in the progressively deformation.
基金supported by theState Key Basic Research,Development and Planning Program (2006CB403202)Discipline Construction Foundation of Guizhou University
文摘As viewed from space remote-sensing images (e.g. Google Earth images) of South Guizhou and North Guangxi, the authors found that macroscopic karst landscape on the Earth's surface is strongly controlled by the Conjugated shear joint of "X" type. Joints of this kind constitute a huge infiltration network and act as channel-ways for the permeation of meteoric waters from the surface, thus, leading to the dissolution of carbonate rocks nearby. As a result, the karst landscape is formed, which is dominated by linear karst valleys. An "X" karst valley network structure appears in the area where horizontal strata are distributed, and a feather-like network structure appears in the area where vertical strata are distributed, respectively. When the water permeates downwards to the underground-water level, it will flow horizontally along the strike of "X" joints toward the local base level of erosion to form an "X" network system of underground conduits in the area where horizontal strata are distributed, but it is relatively complex, because of the joining of other joints. This is the first time we have made use of Google Earth images to study the karst environment. Therefore, it has been successful in research on the Earth's geomorphology, which could only rely on aerial photos and satellite photos in the past. Google Earth images provide low-cost and applicable imaging materials for the study of Earth's geomorphology and karst rocky desertification and its control.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774377 and 11574343)。
文摘We investigate the beam focusing technology of shear-vertical(SV) waves for a contact-type linear phased array to overcome the shortcomings of conventional wedge transducer arrays. The numerical simulation reveals the transient excitation and propagation characteristics of SV waves. It is found that the element size plays an important role in determining the transient radiation directivity of SV waves. The transient beam focusing characteristics of SV waves for various array parameters are deeply studied. It is particularly interesting to see that smaller element width will provide the focused beam of SV waves with higher quality, while larger element width may result in erratic fluctuation of focusing energy around the focal point. There exists a specific range of inter-element spacing for optimum focusing performance. Moreover, good beam focusing performance of SV waves can be achieved only at high steering angles.
文摘Shear zone hosted gold deposits in China can be divided into four types: ductile,brittle ductile,ductile brittle and brittle, of which the ductile and brittle types are the basic ones. All these types of gold deposits have their own geochemical characteristics. The Hetai gold deposit in Guangdong Province, for example, is a mylonite type gold deposit in a ductile shear zone. With increasing mylonitization, obvious changes took place in trace elements in minerals and rocks, enriching gold and mineralizing elements. The S and Pb isotope data indicated that the ore forming materials were derived from the strata. Hydrogen and oxygen isotopic and fluid inclusion studies also implied that the ore forming fluid was much closer to meteoric water from the early to the late ore forming stage. The Linglong gold deposit, Shangdong Province, is a quartz\|type gold deposit in a brittle shear zone. Changes in rocks, minerals and trace elements occurred in the process of formation of gold quartz veins, and the analytical results of S, Pb, H and O isotopes showed that ore deposition is connected not only with the Jiaodong Group, but also with anatexic granites.
文摘The G. Abu Garadi area is covered mainly by metasediments, alkali feldspar granites and stream sediments. The alkali feldspar granite is traversed by a major strike-slip fault trending in an N-S direction as well as two subordinate sets of faults trending NW to WNW for the first one and NE for the second one. These faults represent the shear zones affected by magmatic (syngenetic) as well as hydrothermal (epigenetic) activities causing alteration of the granitic rocks. The most common alteration features are albitization, greisenization and koalinitization. The mass balance calculations of the studied altered samples show enrichments in Zr, Y, Ni, U, Th and Ga and depletions in Zn, Sr, Nb, Ba, Pb, Cu and V. Only the greisenized samples exhibit a significant enrichment in Nb, ∑REE budget and pronounced lanthanide tetrad effect (M-type), especially TE1,4, while weakly expressed tetrad effects are for the other albitized and koalinitized samples. Mineralogically, the common accessory minerals in the altered samples include samarskite-(Y), betafite, uranothorite, zircon, fluorite and cassiterite. The greisenized granites contain high eU and eTh than the other altered types, where they are characterized by an assemblage of the radioactive minerals; samarskite-(Y), betafite, uranothorite in addition to zircon. The inter-element relationships between U and Th and also their ratios illustrate that the radioelement distribution in these granites is mainly governed by magmatic processes, in addition to post-magmatic ones. The distribution of chemical elements and the fractionation of some isovalents within the shear zone are largely controlled by the newly formed mineral phases. With respect to uranium mobilization, uranium migrated from the host alkali feldspar granites of G. Abu Garadi, while the shear zones acted as traps for the migrated uranium. Moreover, U migrated in the shear zone during greisenization and albitization, and migrated out during koalinitization.
基金supported by the U.S. Department of Energy(Contract No. DE-FG52-03NA99204)
文摘A three-dimensional model of near-surface shear-wave velocity in the deep alluvial basin underlying the metropolitan area of Las Vegas, Nevada (USA), is being developed for earthquake site response projections. The velocity dataset, which includes 230 measurements, is interpolated across the model using depth-dependent correlations of velocity with sediment type. The sediment-type database contains more than 1 400 well and borehole logs. Sediment sequences reported in logs are assigned to one of four units. A characteristic shear-wave velocity profile is developed for each unit by analyzing closely spaced pairs of velocity profiles and well or borehole logs. The resulting velocity model exhibits reasonable values and patterns, although it does not explicitly honor the measured shear-wave velocity profiles. Site response investigations that applied a preliminary version of the velocity model support a two-zone ground-shaking hazard model for the valley. Areas in which clay predominates in the upper 30 m are predicted to have stronger ground motions than the rest of the basin.
文摘: The kinematic vorticity number and strain of the mylonitic zone related to the detachment fault increase from ESE to WNW along the moving direction of the upper plate of the Xiaoqinling metamorphic core complex (XMCC) and the geometry of quartz c-axis fabrics changes progressively from crossed girdles to single girdles in the same direction. Therefore, pure shear is dominant in the ESE part of the XMCC while simple shear becomes increasingly important towards WNW. However, the shear type does not change with the strain across the shear zone, thus the variation of shear type is of significance in indicating the formation mechanism. The granitic plutons within the XMCC came from the deep source and their emplacement was an active and forceful upwelling prior to the detachment faulting. The PTt path demonstrates that magmatism is an important cause for the formation of the XMCC. The formation mechanism of the XMCC is supposed to be active plutonism and passive detachment. Crustal thickening and magmatic doming caused necking extension with pure shear, and magmatic heating and doming resulted in detachment extension with simple shear and formed the XMCC.