Robot navigation in complex crowd service scenarios,such as medical logistics and commercial guidance,requires a dynamic balance between safety and efficiency,while the traditional fixed reward mechanism lacks environ...Robot navigation in complex crowd service scenarios,such as medical logistics and commercial guidance,requires a dynamic balance between safety and efficiency,while the traditional fixed reward mechanism lacks environmental adaptability and struggles to adapt to the variability of crowd density and pedestrian motion patterns.This paper proposes a navigation method that integrates spatiotemporal risk field modeling and adaptive reward optimization,aiming to improve the robot’s decision-making ability in diverse crowd scenarios through dynamic risk assessment and nonlinear weight adjustment.We construct a spatiotemporal risk field model based on a Gaussian kernel function by combining crowd density,relative distance,andmotion speed to quantify environmental complexity and realize crowd-density-sensitive risk assessment dynamically.We apply an exponential decay function to reward design to address the linear conflict problem of fixed weights in multi-objective optimization.We adaptively adjust weight allocation between safety constraints and navigation efficiency based on real-time risk values,prioritizing safety in highly dense areas and navigation efficiency in sparse areas.Experimental results show that our method improves the navigation success rate by 9.0%over state-of-the-art models in high-density scenarios,with a 10.7%reduction in intrusion time ratio.Simulation comparisons validate the risk field model’s ability to capture risk superposition effects in dense scenarios and the suppression of near-field dangerous behaviors by the exponential decay mechanism.Our parametric optimization paradigm establishes an explicit mapping between navigation objectives and risk parameters through rigorous mathematical formalization,providing an interpretable approach for safe deployment of service robots in dynamic environments.展开更多
More than a simple concert pianist,Wilson Chu is an Indonesian musical diplomacy force.As a distinguished performer,composer,and educator,Wilson has left an indelible mark on the international stage by seamlessly blen...More than a simple concert pianist,Wilson Chu is an Indonesian musical diplomacy force.As a distinguished performer,composer,and educator,Wilson has left an indelible mark on the international stage by seamlessly blending Western classical music with Southeast Asian tradition.Since 2019,he has been the youngest Associate Professor of Piano at the College of Chinese and ASEAN Arts(CCAA)at Chengdu University,where he has dedicated himself to shaping the next generation of musicians.展开更多
This work introduces special states for light in multimode fibers featuring strongly enhanced or reduced correlations be-tween output fields in the presence of environmental temperature fluctuations.Using experimental...This work introduces special states for light in multimode fibers featuring strongly enhanced or reduced correlations be-tween output fields in the presence of environmental temperature fluctuations.Using experimentally measured multi-tem-perature transmission matrix,a set of temperature principal modes that exhibit resilience to disturbances caused by tem-perature fluctuations can be generated.Reversing this concept also allows the construction of temperature anti-principal modes,with output profiles more susceptible to temperature influences than the unmodulated wavefront.Despite changes in the length of the multimode fiber within the temperature-fluctuating region,the proposed approach remains capable of robustly controlling the temperature response within the fiber.To illustrate the practicality of the proposed spe-cial state,a learning-empowered fiber specklegram temperature sensor based on temperature anti-principal mode sensi-tization is proposed.This sensor exhibits outstanding superiority over traditional approaches in terms of resolution and accuracy.These novel states are anticipated to have wide-ranging applications in fiber communication,sensing,imaging,and spectroscopy,and serve as a source of inspiration for the discovery of other novel states.展开更多
This study examines the bidirectional shaping mechanism between short-video algorithms and film narratives within the attention economy.It investigates how algorithmic logic influences cinematic storytelling and how f...This study examines the bidirectional shaping mechanism between short-video algorithms and film narratives within the attention economy.It investigates how algorithmic logic influences cinematic storytelling and how films,in turn,contribute to the aesthetic enhancement of short-video content.Drawing on Communication Accommodation Theory and Berry’s Acculturation Theory,along with case analyses and industry data,this research demonstrates that algorithms push films toward high-stimulus,fast-paced narrative patterns—characterized by increased shot density and structural fragmentation—to capture and retain viewer attention.Conversely,films counter this influence by supplying narratively deep and artistically refined content that elevates short-video aesthetics and encourages critical audience engagement.This dynamic reflects a process of mutual adaptation rather than one-sided dominance.The study concludes that such interaction signifies a broader restructuring of cultural production logic,facilitating cross-media convergence while simultaneously posing risks to cultural diversity due to the prioritization of high-traffic content.Balancing this relationship will require policy support,algorithmic transparency,and strengthened industry self-regulation to preserve artistic integrity and cultural ecosystem diversity.展开更多
Object imaging beyond the direct line of sight is significant for applications in robotic vision,remote sensing,autonomous driving,and many other areas.Reconstruction of a non-line-of-sight(NLOS)screen is a complex in...Object imaging beyond the direct line of sight is significant for applications in robotic vision,remote sensing,autonomous driving,and many other areas.Reconstruction of a non-line-of-sight(NLOS)screen is a complex inverse problem that comes with ultrafast time-resolved imager requirements and substantial computational demands to extract information from the multi-bounce scattered light.Consequently,the echo signal always suffers from serious deterioration in both intensity and shape,leading to limited resolution and image contrast.Here,we propose a concept of vectorial digitelligent optics for high-resolution NLOS imaging to cancel the wall’s scattering and refocus the light onto hidden targets for enhanced echo.In this approach,the polarization and wavefront of the laser spot are intelligently optimized via a feedback algorithm to form a near-perfect focusing pattern through a random scattering wall.By raster scanning the focusing spot across the object’s surface within the optical-memory-effect range of the wall,we obtain nearly diffraction-limited NLOS imaging with an enhanced signal-to-noise ratio.Our experimental results demonstrate a resolution of 0.40 mm at a distance of 0.35 m,reaching the diffraction limit of the system.Furthermore,we demonstrate that the proposed method is feasible for various complex NLOS scenarios.Our methods may open an avenue for active imaging,communication,and laser wireless power transfer.展开更多
The construction of ideological-political education within foreign language courses requires an integrated approach that encompasses value shaping,knowledge transfer,and competence cultivation.A critical challenge in ...The construction of ideological-political education within foreign language courses requires an integrated approach that encompasses value shaping,knowledge transfer,and competence cultivation.A critical challenge in this domain is the effective design and implementation of tasks that instill values,while also synergizing with acquiring knowledge and enhancing competencies.This paper delves into the philosophical underpinnings and operational principles of value-shaping task design and its practical application within the context of foreign language teaching.Utilizing Contemporary College English(Integrated Coursebook 3)as a case study,the paper explores value shaping-based task design in ideological-political education of foreign language courses,with the aim of providing references for the construction of ideological-political education in foreign language teaching.展开更多
The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection propert...The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection properties of the ultrafast laser welding technology offer a novel method for welding of diverse transparent materials,thus having wide range of potential applications in aerospace,opto-mechanical systems,sensors,microfluidic,optics,etc.In this comprehensive review,tuning the transient electron activation processes,high-rate laser energy deposition,and dynamic evolution of plasma morphology by the temporal/spatial shaping methods have been demonstrated to facilitate the transition from conventional homogeneous transparent material welding to the more intricate realm of transparent/metal heterogeneous material welding.The welding strength and stability are also improvable through the implementation of real-time,in-situ monitoring techniques and the prompt diagnosis of welding defects.The principles of ultrafast laser welding,bottleneck problems in the welding,novel welding methods,advances in welding performance,in-situ monitoring and diagnosis,and various applications are reviewed.Finally,we offer a forward-looking perspective on the fundamental challenges within the field of ultrafast laser welding and identify key areas for future research,underscoring the imperative need for ongoing innovation and exploration.展开更多
For better flexibility and greater coverage areas,Unmanned Aerial Vehicles(UAVs)have been applied in Flying Mobile Edge Computing(F-MEC)systems to offer offloading services for the User Equipment(UEs).This paper consi...For better flexibility and greater coverage areas,Unmanned Aerial Vehicles(UAVs)have been applied in Flying Mobile Edge Computing(F-MEC)systems to offer offloading services for the User Equipment(UEs).This paper considers a disaster-affected scenario where UAVs undertake the role of MEC servers to provide computing resources for Disaster Relief Devices(DRDs).Considering the fairness of DRDs,a max-min problem is formulated to optimize the saved time by jointly designing the trajectory of the UAVs,the offloading policy and serving time under the constraint of the UAVs'energy capacity.To solve the above non-convex problem,we first model the service process as a Markov Decision Process(MDP)with the Reward Shaping(RS)technique,and then propose a Deep Reinforcement Learning(DRL)based algorithm to find the optimal solution for the MDP.Simulations show that the proposed RS-DRL algorithm is valid and effective,and has better performance than the baseline algorithms.展开更多
First Published:2020 ISBN:9781421438740 Published by John Hopkins Press https://www.press.jhu.edu“The geological imagination of India,its landscapes,people,past and destiny,drive the narrative of this book”,Pratik C...First Published:2020 ISBN:9781421438740 Published by John Hopkins Press https://www.press.jhu.edu“The geological imagination of India,its landscapes,people,past and destiny,drive the narrative of this book”,Pratik Chakrabarti writes in his introduction to Inscriptions of Nature.His ambitious work examines the development of the natural and anthropological sciences on the Indian subcontinent since the early 19th century,and the shaping of knowledge about Indian nature through the exploration of its deep past:an exploration that dug not only into the depths of the earth,but also into ancient history,texts,myths,legends,folklore and the genealogies of local populations.This in-depth study not only combines the history of geology,paleontology,anthropology and ethnography,it also finely analyzes the interactions between the theoretical framework of scientific knowledge imported from Europe and local history,mythologies and indigenous beliefs.展开更多
Role shaping in dramatic performance is a fusion of art and skills,which involves the deep digging of character,the delicate expression of emotion,and the logical construction of behavior.Actors not only analyze the s...Role shaping in dramatic performance is a fusion of art and skills,which involves the deep digging of character,the delicate expression of emotion,and the logical construction of behavior.Actors not only analyze the script and understand the emotions of the role to create a multi-dimensional,three-dimensional character image,but also need to use the skills of sound,form,lines,and so on,to convey the role’s internal emotions and psychological changes.This process tests the artistic accomplishment and skill level of the actors,and requires them to have keen observation and rich imagination and creativity.Through the analysis of the role of Yu Ji in the Peking Opera Farewell My Concubine,it shows the deep integration of artistry and skill,highlighting the unique charm of dramatic performance.展开更多
The spectral memory effect in scattering media is crucial for applications that employ broadband illumination,as it dictates the available spectral range from independent scattering responses.Previous studies mainly c...The spectral memory effect in scattering media is crucial for applications that employ broadband illumination,as it dictates the available spectral range from independent scattering responses.Previous studies mainly considered a passive result with the average impact of the scattering medium,whereas it is vital to actively enhance or suppress this effect for applications concerned with large spectral range or fine resolution.We construct an analytical model by integrating the concepts of wave-based interference and photon-based propagation,which manifests a potential physical image for active manipulation by utilizing scattering eigenchannels.Our theoretical predictions indicate that the spectral memory effect is enhanced using high-transmission eigenchannels while it is suppressed using low-transmission eigenchannels.These predictions are supported by finite-difference time-domain simulations and experiments,demonstrating that the spectral memory effect’s range can be actively manipulated.Quantitatively,the experiments achieved variations in enhancement and suppression that exceeded threefold(∼3.27).We clarify the underlying principles of the spectral memory effect in scattering media and demonstrate active manipulation of multispectral scattering processes.展开更多
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working...This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.展开更多
With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailora...Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.展开更多
Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatm...Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed.展开更多
Tea’s popularity and flavor are influenced by factors like cultivation and processing methods and shaping techniques also have an impact on tea flavor.This study employed targeted metabolomics and chemometrics to inv...Tea’s popularity and flavor are influenced by factors like cultivation and processing methods and shaping techniques also have an impact on tea flavor.This study employed targeted metabolomics and chemometrics to investigate how shaping techniques affect the flavor of milk-flavored white tea(MFWT).The results showed that the tea cake sample with the shortest pressing time(Y90)has the highest amino acid content and milky aroma intensity.There were variations in amino acids,catechins,and soluble sugars among MFWT samples with different shaping techniques.The total contents of amino acids and catechins in tea cake sample(Y90)were significantly lower than those in the loose tea sample(SC)and bundle-like tea sample(SG),while the total sugar content was significantly higher than that in SC(P<0.05).Additionally,the content of volatiles presenting milky aroma(VIP&OAV>1)in Y90 remained lower relative to SC and SG(P<0.05),but the proportion was not different from that in SC and SG,minimally affecting the overall flavor.The short-time pressing method might be suitable for mass production of MFWT.These findings provide insights into improving the tightness of the appearance of MFWT with minimal impact on tea flavor.展开更多
The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O ...The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.展开更多
Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devo...Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.展开更多
Spatiotemporal shaping of ultrashort pulses is pivotal for various technologies,such as burst laser ablation and ultrafast imaging.However,the difficulty of pulse stretching to subnanosecond intervals and independent ...Spatiotemporal shaping of ultrashort pulses is pivotal for various technologies,such as burst laser ablation and ultrafast imaging.However,the difficulty of pulse stretching to subnanosecond intervals and independent control of the spatial profile for each pulse limit their advancement.We present a pulse manipulation technique for producing spectrally separated GHz burst pulses from a single ultrashort pulse,where each pulse is spatially shapable.We demonstrated the production of pulse trains at intervals of 0.1 to 3 ns in the 800-and 400-nm wavelength bands and applied them to ultrafast single-shot transmission spectroscopic imaging(4 Gfps)of laser ablation dynamics with two-color sequentially timed all-optical mapping photography.Furthermore,we demonstrated the production of pulse trains containing a shifted or dual-peak pulse as examples of individual spatial shaping of GHz burst pulses.Our proposed technique brings unprecedented spatiotemporal manipulation of GHz burst pulses,which can be useful for a wide range of laser applications.展开更多
Faster-than-Nyquist(FTN)signaling is a potential scheme for the sixth generation(6G)communication system to improve the spectral efficiency(SE).In this paper,we propose a joint optimization algorithm of precoding and ...Faster-than-Nyquist(FTN)signaling is a potential scheme for the sixth generation(6G)communication system to improve the spectral efficiency(SE).In this paper,we propose a joint optimization algorithm of precoding and constellation shaping for FTN signaling,which is based on simulated optimization via the bare bones particle swarm optimization(BBPSO).The information-theoretical analysis and simulated error performance show that the proposed method is efficient,which can get a significant improvement in terms of average mutual information(AMI)and bit error rate(BER)performance.The simulated BER results verify the theoretical AMI analysis.Compared with the conventional regular 16QAM FTN scheme,when BER is at 10-5,the joint optimized scheme can obtain 0.50 dB and 0.60 dB performance gain with SE at 3.077 bits/s/Hz and 3.282 bits/s/Hz,respectively.Therefore,the proposed scheme is reliable,and thus suitable for the 6G communication.展开更多
基金supported by the Sichuan Science and Technology Program(2025ZNSFSC0005).
文摘Robot navigation in complex crowd service scenarios,such as medical logistics and commercial guidance,requires a dynamic balance between safety and efficiency,while the traditional fixed reward mechanism lacks environmental adaptability and struggles to adapt to the variability of crowd density and pedestrian motion patterns.This paper proposes a navigation method that integrates spatiotemporal risk field modeling and adaptive reward optimization,aiming to improve the robot’s decision-making ability in diverse crowd scenarios through dynamic risk assessment and nonlinear weight adjustment.We construct a spatiotemporal risk field model based on a Gaussian kernel function by combining crowd density,relative distance,andmotion speed to quantify environmental complexity and realize crowd-density-sensitive risk assessment dynamically.We apply an exponential decay function to reward design to address the linear conflict problem of fixed weights in multi-objective optimization.We adaptively adjust weight allocation between safety constraints and navigation efficiency based on real-time risk values,prioritizing safety in highly dense areas and navigation efficiency in sparse areas.Experimental results show that our method improves the navigation success rate by 9.0%over state-of-the-art models in high-density scenarios,with a 10.7%reduction in intrusion time ratio.Simulation comparisons validate the risk field model’s ability to capture risk superposition effects in dense scenarios and the suppression of near-field dangerous behaviors by the exponential decay mechanism.Our parametric optimization paradigm establishes an explicit mapping between navigation objectives and risk parameters through rigorous mathematical formalization,providing an interpretable approach for safe deployment of service robots in dynamic environments.
文摘More than a simple concert pianist,Wilson Chu is an Indonesian musical diplomacy force.As a distinguished performer,composer,and educator,Wilson has left an indelible mark on the international stage by seamlessly blending Western classical music with Southeast Asian tradition.Since 2019,he has been the youngest Associate Professor of Piano at the College of Chinese and ASEAN Arts(CCAA)at Chengdu University,where he has dedicated himself to shaping the next generation of musicians.
基金financial supports from the National Natural Science Foundation of China (62075132 and 92050202)Natural Science Foundation of Shanghai (22ZR1443100)
文摘This work introduces special states for light in multimode fibers featuring strongly enhanced or reduced correlations be-tween output fields in the presence of environmental temperature fluctuations.Using experimentally measured multi-tem-perature transmission matrix,a set of temperature principal modes that exhibit resilience to disturbances caused by tem-perature fluctuations can be generated.Reversing this concept also allows the construction of temperature anti-principal modes,with output profiles more susceptible to temperature influences than the unmodulated wavefront.Despite changes in the length of the multimode fiber within the temperature-fluctuating region,the proposed approach remains capable of robustly controlling the temperature response within the fiber.To illustrate the practicality of the proposed spe-cial state,a learning-empowered fiber specklegram temperature sensor based on temperature anti-principal mode sensi-tization is proposed.This sensor exhibits outstanding superiority over traditional approaches in terms of resolution and accuracy.These novel states are anticipated to have wide-ranging applications in fiber communication,sensing,imaging,and spectroscopy,and serve as a source of inspiration for the discovery of other novel states.
文摘This study examines the bidirectional shaping mechanism between short-video algorithms and film narratives within the attention economy.It investigates how algorithmic logic influences cinematic storytelling and how films,in turn,contribute to the aesthetic enhancement of short-video content.Drawing on Communication Accommodation Theory and Berry’s Acculturation Theory,along with case analyses and industry data,this research demonstrates that algorithms push films toward high-stimulus,fast-paced narrative patterns—characterized by increased shot density and structural fragmentation—to capture and retain viewer attention.Conversely,films counter this influence by supplying narratively deep and artistically refined content that elevates short-video aesthetics and encourages critical audience engagement.This dynamic reflects a process of mutual adaptation rather than one-sided dominance.The study concludes that such interaction signifies a broader restructuring of cultural production logic,facilitating cross-media convergence while simultaneously posing risks to cultural diversity due to the prioritization of high-traffic content.Balancing this relationship will require policy support,algorithmic transparency,and strengthened industry self-regulation to preserve artistic integrity and cultural ecosystem diversity.
基金supported by the National Key Research and Development Program of China(2023YFB2805800 and 2021YFA1401003)the National Natural Science Foundation of China(62222513).
文摘Object imaging beyond the direct line of sight is significant for applications in robotic vision,remote sensing,autonomous driving,and many other areas.Reconstruction of a non-line-of-sight(NLOS)screen is a complex inverse problem that comes with ultrafast time-resolved imager requirements and substantial computational demands to extract information from the multi-bounce scattered light.Consequently,the echo signal always suffers from serious deterioration in both intensity and shape,leading to limited resolution and image contrast.Here,we propose a concept of vectorial digitelligent optics for high-resolution NLOS imaging to cancel the wall’s scattering and refocus the light onto hidden targets for enhanced echo.In this approach,the polarization and wavefront of the laser spot are intelligently optimized via a feedback algorithm to form a near-perfect focusing pattern through a random scattering wall.By raster scanning the focusing spot across the object’s surface within the optical-memory-effect range of the wall,we obtain nearly diffraction-limited NLOS imaging with an enhanced signal-to-noise ratio.Our experimental results demonstrate a resolution of 0.40 mm at a distance of 0.35 m,reaching the diffraction limit of the system.Furthermore,we demonstrate that the proposed method is feasible for various complex NLOS scenarios.Our methods may open an avenue for active imaging,communication,and laser wireless power transfer.
文摘The construction of ideological-political education within foreign language courses requires an integrated approach that encompasses value shaping,knowledge transfer,and competence cultivation.A critical challenge in this domain is the effective design and implementation of tasks that instill values,while also synergizing with acquiring knowledge and enhancing competencies.This paper delves into the philosophical underpinnings and operational principles of value-shaping task design and its practical application within the context of foreign language teaching.Utilizing Contemporary College English(Integrated Coursebook 3)as a case study,the paper explores value shaping-based task design in ideological-political education of foreign language courses,with the aim of providing references for the construction of ideological-political education in foreign language teaching.
基金supports from National Key R&D Program of China(Grant No.2023YFB4605500)National Natural Science Foundation of China(Grant No.52105498)+3 种基金Natural Science Foundation of Hunan Province(Grant No.2022JJ40597)the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1132)State Key Laboratory of Precision Manufacturing for Extreme Service Performance(Grant No.ZZYJKT2023-08)support in analyzing the status of ultrafast laser welding applications,as well as the corresponding project support(Grant No.HKF202400595).
文摘The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection properties of the ultrafast laser welding technology offer a novel method for welding of diverse transparent materials,thus having wide range of potential applications in aerospace,opto-mechanical systems,sensors,microfluidic,optics,etc.In this comprehensive review,tuning the transient electron activation processes,high-rate laser energy deposition,and dynamic evolution of plasma morphology by the temporal/spatial shaping methods have been demonstrated to facilitate the transition from conventional homogeneous transparent material welding to the more intricate realm of transparent/metal heterogeneous material welding.The welding strength and stability are also improvable through the implementation of real-time,in-situ monitoring techniques and the prompt diagnosis of welding defects.The principles of ultrafast laser welding,bottleneck problems in the welding,novel welding methods,advances in welding performance,in-situ monitoring and diagnosis,and various applications are reviewed.Finally,we offer a forward-looking perspective on the fundamental challenges within the field of ultrafast laser welding and identify key areas for future research,underscoring the imperative need for ongoing innovation and exploration.
基金supported by the Key Research and Development Program of Jiangsu Province(No.BE2020084-2)the National Key Research and Development Program of China(No.2020YFB1600104)。
文摘For better flexibility and greater coverage areas,Unmanned Aerial Vehicles(UAVs)have been applied in Flying Mobile Edge Computing(F-MEC)systems to offer offloading services for the User Equipment(UEs).This paper considers a disaster-affected scenario where UAVs undertake the role of MEC servers to provide computing resources for Disaster Relief Devices(DRDs).Considering the fairness of DRDs,a max-min problem is formulated to optimize the saved time by jointly designing the trajectory of the UAVs,the offloading policy and serving time under the constraint of the UAVs'energy capacity.To solve the above non-convex problem,we first model the service process as a Markov Decision Process(MDP)with the Reward Shaping(RS)technique,and then propose a Deep Reinforcement Learning(DRL)based algorithm to find the optimal solution for the MDP.Simulations show that the proposed RS-DRL algorithm is valid and effective,and has better performance than the baseline algorithms.
文摘First Published:2020 ISBN:9781421438740 Published by John Hopkins Press https://www.press.jhu.edu“The geological imagination of India,its landscapes,people,past and destiny,drive the narrative of this book”,Pratik Chakrabarti writes in his introduction to Inscriptions of Nature.His ambitious work examines the development of the natural and anthropological sciences on the Indian subcontinent since the early 19th century,and the shaping of knowledge about Indian nature through the exploration of its deep past:an exploration that dug not only into the depths of the earth,but also into ancient history,texts,myths,legends,folklore and the genealogies of local populations.This in-depth study not only combines the history of geology,paleontology,anthropology and ethnography,it also finely analyzes the interactions between the theoretical framework of scientific knowledge imported from Europe and local history,mythologies and indigenous beliefs.
文摘Role shaping in dramatic performance is a fusion of art and skills,which involves the deep digging of character,the delicate expression of emotion,and the logical construction of behavior.Actors not only analyze the script and understand the emotions of the role to create a multi-dimensional,three-dimensional character image,but also need to use the skills of sound,form,lines,and so on,to convey the role’s internal emotions and psychological changes.This process tests the artistic accomplishment and skill level of the actors,and requires them to have keen observation and rich imagination and creativity.Through the analysis of the role of Yu Ji in the Peking Opera Farewell My Concubine,it shows the deep integration of artistry and skill,highlighting the unique charm of dramatic performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.12325408,92150102,62205302,92150301,12274129,12074121,62105101,62175066,12274139,and 12404380)the Fundamental and Applied Basic Research Project of Guangzhou(Grant No.2024A04J2001)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2024B1515020051 and 2023A1515110742).
文摘The spectral memory effect in scattering media is crucial for applications that employ broadband illumination,as it dictates the available spectral range from independent scattering responses.Previous studies mainly considered a passive result with the average impact of the scattering medium,whereas it is vital to actively enhance or suppress this effect for applications concerned with large spectral range or fine resolution.We construct an analytical model by integrating the concepts of wave-based interference and photon-based propagation,which manifests a potential physical image for active manipulation by utilizing scattering eigenchannels.Our theoretical predictions indicate that the spectral memory effect is enhanced using high-transmission eigenchannels while it is suppressed using low-transmission eigenchannels.These predictions are supported by finite-difference time-domain simulations and experiments,demonstrating that the spectral memory effect’s range can be actively manipulated.Quantitatively,the experiments achieved variations in enhancement and suppression that exceeded threefold(∼3.27).We clarify the underlying principles of the spectral memory effect in scattering media and demonstrate active manipulation of multispectral scattering processes.
基金supported by Liaoning Provincial Department of Education 2023 Basic Research Projects for Universities and Colleges(Grant No.JYTQN2023131)Liaoning Provincial Science and Technology Program:Cooperative Control and Recognition of Unmanned Vessels for Fishing Vessel Operation Scenarios(Grant No.600024003)Liaoning Provincial Department of Education Scientific Research Funding Project(Grant No.LJKZ0726).
文摘This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
文摘Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.
基金supported by National Natural Science Foundation of China(62135007 and 61925502).
文摘Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed.
基金support from the National Key Research and Development Program of China(2022YFD2101101)the Modern Agricultural(Tea)Industry Technology System of Fujian Province,China([2021]No.90)+2 种基金the Guiding Project of Science and Technology Department in Fujian Province,China(2022N0031)the Special Fund Program for Science and Technology Innovation of Fujian Agriculture and Forestry University,China(KFB23203)the Special Fund for Science and Technology Innovation of Fujian Zhang Tianfu Tea Development Foundation,China(FJZTF01)。
文摘Tea’s popularity and flavor are influenced by factors like cultivation and processing methods and shaping techniques also have an impact on tea flavor.This study employed targeted metabolomics and chemometrics to investigate how shaping techniques affect the flavor of milk-flavored white tea(MFWT).The results showed that the tea cake sample with the shortest pressing time(Y90)has the highest amino acid content and milky aroma intensity.There were variations in amino acids,catechins,and soluble sugars among MFWT samples with different shaping techniques.The total contents of amino acids and catechins in tea cake sample(Y90)were significantly lower than those in the loose tea sample(SC)and bundle-like tea sample(SG),while the total sugar content was significantly higher than that in SC(P<0.05).Additionally,the content of volatiles presenting milky aroma(VIP&OAV>1)in Y90 remained lower relative to SC and SG(P<0.05),but the proportion was not different from that in SC and SG,minimally affecting the overall flavor.The short-time pressing method might be suitable for mass production of MFWT.These findings provide insights into improving the tightness of the appearance of MFWT with minimal impact on tea flavor.
基金supported by the National Natural Science Foundation of China (Nos.52074254 and 52174349)the CAS Project for Young Scientists in Basic Research,China (No.YSBR-025)+3 种基金the Shandong Provincial Science and Technology Innovation Project,China (No.2019JZZY010363)the Key Projects of International Cooperation,China (No.122111KYSB20200034)the Project of Key Laboratory of Science and Technology on Particle Materials,China (No.CXJJ-22S043)Chinese Academy of Sciences.This work was also financially supported by the Selection of Best Candidates to Undertake Key Research Projects,China (No.211110230200).
文摘The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.
基金supported by the Key Research and Development Program of Shaanxi (2022GXLH-02-09)the Aeronautical Science Foundation of China (20200051053001)the Natural Science Basic Research Program of Shaanxi (2020JM-147)。
文摘Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.
基金supported by MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) (Grant No.JPMXS0118067246)K.S.was supported by JST ACT-X (JPMJAX22K8).Y.I.and A.I.were partly supported by JST PRESTO (JPMJPR2003 and JPMJPR1902,respectively)K.N.was partly supported by JST FOREST (JPMJFR215C).
文摘Spatiotemporal shaping of ultrashort pulses is pivotal for various technologies,such as burst laser ablation and ultrafast imaging.However,the difficulty of pulse stretching to subnanosecond intervals and independent control of the spatial profile for each pulse limit their advancement.We present a pulse manipulation technique for producing spectrally separated GHz burst pulses from a single ultrashort pulse,where each pulse is spatially shapable.We demonstrated the production of pulse trains at intervals of 0.1 to 3 ns in the 800-and 400-nm wavelength bands and applied them to ultrafast single-shot transmission spectroscopic imaging(4 Gfps)of laser ablation dynamics with two-color sequentially timed all-optical mapping photography.Furthermore,we demonstrated the production of pulse trains containing a shifted or dual-peak pulse as examples of individual spatial shaping of GHz burst pulses.Our proposed technique brings unprecedented spatiotemporal manipulation of GHz burst pulses,which can be useful for a wide range of laser applications.
基金supported by Fundamental Research Program of Shanxi Province(202203021212159)。
文摘Faster-than-Nyquist(FTN)signaling is a potential scheme for the sixth generation(6G)communication system to improve the spectral efficiency(SE).In this paper,we propose a joint optimization algorithm of precoding and constellation shaping for FTN signaling,which is based on simulated optimization via the bare bones particle swarm optimization(BBPSO).The information-theoretical analysis and simulated error performance show that the proposed method is efficient,which can get a significant improvement in terms of average mutual information(AMI)and bit error rate(BER)performance.The simulated BER results verify the theoretical AMI analysis.Compared with the conventional regular 16QAM FTN scheme,when BER is at 10-5,the joint optimized scheme can obtain 0.50 dB and 0.60 dB performance gain with SE at 3.077 bits/s/Hz and 3.282 bits/s/Hz,respectively.Therefore,the proposed scheme is reliable,and thus suitable for the 6G communication.