期刊文献+
共找到114篇文章
< 1 2 6 >
每页显示 20 50 100
Shaping Effects of the E-Fishbone in Tokamaks
1
作者 王中天 王龙 +4 位作者 龙永兴 董家齐 何志雄 刘宇 唐昌建 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第1期12-16,共5页
Shaping effects of the E-fishbone in tokamaks are investigated. Coordinates related to the Solov'ev configuration are used to calculate the precession frequency and kinetic contribu- tion. It is shown that elongation... Shaping effects of the E-fishbone in tokamaks are investigated. Coordinates related to the Solov'ev configuration are used to calculate the precession frequency and kinetic contribu- tion. It is shown that elongation does not change the precession frequency and the kinetic energy. Growth rates of the E-fishbone vary with elongation which essentially has destabilizing effects. For elongated tokamaks, triangularity has a stabilizing effect on the modes which play a compensative role. The results may apply to Sunist. 展开更多
关键词 shaping effects E-fishbone TOKAMAKS Solov'ev configuration
在线阅读 下载PDF
Pronounced impact of size and shape effects on creep rupture life of a K439B superalloy combustion chamber casting simulator
2
作者 Wen-tong Liu Yi-dong Wu +3 位作者 Lei Gao Jing-yang Chen Cheng-bo Xiao Xi-dong Hui 《China Foundry》 2025年第2期215-221,共7页
The size and shape effect(SSE)of components has become a critical issue for mechanical properties,application reliability,and processing.In this study,the creep rupture life(CRL)of components with different wall thick... The size and shape effect(SSE)of components has become a critical issue for mechanical properties,application reliability,and processing.In this study,the creep rupture life(CRL)of components with different wall thicknesses and positions in a combustion chamber casing simulator made of K439B superalloy was investigated.The intrinsic mechanisms of the SSE were explored from the dendrite structure,volume fraction and size of theγ'phase,and element segregation,etc.It is shown that this casting exhibits a strong SSE of creep rupture life,characterized by a significant difference in the CRL values up to 60%with the variation of wall thickness and position in the casing.In terms of casting technology,the influence of SSE on CRL is actually determined by the cooling rate.The SSE on the creep rupture life originates from the dendrite structure(such as the secondary dendrite arm spacing),volume fraction size of theγ'phase in the dendrite trunk,and elements segregation rate.This work may have implications for the design and application of engineering components with large sizes and complex structures. 展开更多
关键词 K439B superalloy size and shape effects creep rupture life cooling rate γ'phase combustion chamber casing simulator
在线阅读 下载PDF
Effect of Annealing on the Shape Memory Effect and Mechanical Properties of Laser Powder Bed Fusion NiTi Alloy
3
作者 Yunting Guo Mengqi Liu +8 位作者 Chaorui Jiang Ruiyao Liu Jundong Zhang Pengwei Sha Hang Li Zhenglei Yu Zhihui Zhang Zezhou Xu Luquan Ren 《Additive Manufacturing Frontiers》 2025年第1期125-135,共11页
The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory e... The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory effect,which hinder its widespread application.Heat treatment has been identified as a method to enhance the performance of metallic materials in the realm of additive manufacturing.This process eliminates residual stress and enhances performance through precipitation strengthening.This study conducted a comprehensive annealing investigation on NiTi alloys to explore the impact of annealing time and temperature on the phase transformation behavior and shape memory performance.The mechanism underlying the performance enhancement was analyzed using scanning electron microscopy,energy-dispersive X-ray spectroscopy,electron backscatter diffraction,and transmission electron microscopy.The findings revealed that different annealing conditions resulted in multistep phase transformation behavior,with the 500℃-5 h sample exhibiting the best mechanical properties owing to the formation of nanoscale dispersed precipitates like Ni_(4)Ti_(3).However,higher temperatures led to larger precipitates,significantly weakening the properties of the NiTi alloy.Additionally,the annealing treatment did not have a notable impact on the grain size,texture strength,or direction.This study provides valuable insights for optimizing the heat treatment process of LPBF-NiTi alloys. 展开更多
关键词 ANNEALING LPBF-NiTi Shape memory effect Mechanical properties PRECIPITATES
在线阅读 下载PDF
Behaviour of layered sandstone under Brazilian test conditions:Layer orientation and shape effects 被引量:9
4
作者 Abbass Tavallali André Vervoort 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第5期366-377,共12页
The experimental study in this paper focuses on the effects of the layer orientation and sample shape on failure strength and fracture pattern of samples tested under Brazilian test conditions(i.e.diametrical loading ... The experimental study in this paper focuses on the effects of the layer orientation and sample shape on failure strength and fracture pattern of samples tested under Brazilian test conditions(i.e.diametrical loading of cylindrical discs)for one particular layered sandstone which is from Modave in the south of Belgium.The variations of the strength in combination with the failure patterns are examined as a function of the inclination angle between the layer plane and the loading direction.The experimental,results clearly show that the induced fracture patterns are a combination of tensile and/or shear fractures.In shape effect experiments the layer thickness and the number of layer boundaries are investigated.Different blocks of Modave sandstone are used to prepare samples.The layer thickness is different among the various blocks,but the layer thickness in each studied rock block can be considered to be constant;hence,the number of layer boundaries changes according to the sample diameter for samples of the same block.The experimental study shows that the layer thickness plays a more important role than the number of layer boundaries per sample. 展开更多
关键词 Layered sandstone Brazilian test Fracture pattern Layer activation Shape effect
在线阅读 下载PDF
Shape ratio effects on the mechanical characteristics of rectangular prism rocks and isolated pillars under uniaxial compression 被引量:8
5
作者 Kun Du Xuefeng Li +4 位作者 Rui Su Ming Tao Shizhan Lv Jia Luo Jian Zhou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期347-362,共16页
Isolated pillars in underground mines are subjected to uniaxial stress,and the load bearing cross-section of pillars is commonly rectangularly shaped.In addition,the uniaxial compression test(UCT)is widely used for de... Isolated pillars in underground mines are subjected to uniaxial stress,and the load bearing cross-section of pillars is commonly rectangularly shaped.In addition,the uniaxial compression test(UCT)is widely used for determining the basic mechanical properties of rocks and revealing the mechanism of isolated pillar disasters under unidimensional stress.The shape effects of rock mechanical properties under uniaxial compression are mainly quantitatively reflected in the specific shape ratios of rocks.Therefore,it is necessary to study the detailed shape ratio effects on the mechanical properties of rectangular prism rock specimens and isolated pillars under uniaxial compressive stress.In this study,granite,marble and sandstone rectangular prism specimens with various height to width ratios(r)and width to thickness ratios(u)were prepared and tested.The study results show that r and u have a great influence on the bearing ability of rocks,and thin or high rocks have lower uniaxial compressive strength.Reducing the level of r can enhance the u effect on the strength of rocks,and increasing the level of u can enhance the r effect on the strength of rocks.The lateral strain on the thickness side of the rock specimen is larger than that on the width side,which implies that crack growth occurs easily on the thickness side.Considering r and u,a novel strength prediction model of isolated pillars was proposed based on the testing results,and the prediction model was used for the safety assessment of 179 isolated pillars in the Xianglu Mountain Tungsten Mine. 展开更多
关键词 Uniaxial compression test Isolated pillar Rectangular prism Shape ratio effect Failure property
在线阅读 下载PDF
Nuclear ?eld shift effects on stable isotope fractionation: a review 被引量:7
6
作者 Sha Yang Yun Liu 《Acta Geochimica》 EI CAS CSCD 2016年第3期227-239,共13页
An anomalous isotope effect exists in many heavy element isotope systems (e.g., Sr, Gd, Zn, U). This effect used to be called the "odd--even isotope effect" because the odd mass number isotopes behave differently ... An anomalous isotope effect exists in many heavy element isotope systems (e.g., Sr, Gd, Zn, U). This effect used to be called the "odd--even isotope effect" because the odd mass number isotopes behave differently from the even mass number isotopes. This mass-indepen- dent isotope fractionation driving force, which originates from the difference in the ground-state electronic energies caused by differences in nuclear size and shape, is cur- rently denoted as the nuclear field shift effect (NFSE). It is found that the NFSE can drive isotope fractionation of some heavy elements (e.g., Hg, T1, U) to an astonishing degree, far more than the magnitude caused by the con- ventional mass-dependent effect (MDE). For light ele- ments, the MDE is the dominant factor in isotope fractionation, while the NFSE is neglectable. Furthermore, the MDE and the NFSE both decrease as temperatures increase, though at different rates. The MDE decreases rapidly with a factor of 1/T2, while the NFSE decreases slowly with a factor of 1/T. As a result, even at high temperatures, the NFSE is still significant for many heavy element isotope systems. In this review paper, we begin with an introduction of the basic concept of the NSFE, including its history and recent progress, and follow with the potential implications of the inclusion of the NFSE into the kinetic isotope fractionation effect (KIE) and heavy isotope geochronology. 展开更多
关键词 Isotope fractionation Mass-dependent effect.Nuclear field shift effect. Mass-independent fractionation Nuclear volume effect Nuclear shape effect
在线阅读 下载PDF
Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion 被引量:11
7
作者 Wei Chen Dongdong Gu +3 位作者 Jiankai Yang Qin Yang Jie Chen Xianfeng Shen 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期189-205,共17页
Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanica... Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanical equipment application fields. In this study, we designed four gradient lattice structures (GLSs) using the topology optimization method, including the unidirectional GLS, the bi-directional increasing GLS, the bi-directional decreasing GLS and the none-GLS. All GLSs were manufactureed by laser powder bed fusion (LPBF). The uniaxial compression tests and finite element analysis were conducted to investigate the influence of gradient distribution features on deformation modes and energy absorption performance of GLSs. The results showed that, compared with the 45° shear fracture characteristic of the none-GLS, the unidirectional GLS, the bi-directional increasing GLS and the bi-directional decreasing GLS had the characteristics of the layer-by-layer fracture, showing considerably improved energy absorption capacity. The bi-directional increasing GLS showed a unique combination of shear fracture and layer-by-layer fracture, having the optimal energy absorption performance with energy absorption and specific energy absorption of 235.6 J and 9.5 J g-1 at 0.5 strain, respectively. Combined with the shape memory effect of NiTi alloy, multiple compression-heat recovery experiments were carried out to verify the shape memory function of LPBF-processed NiTi GLSs. These findings have potential value for the future design of GLSs and the realization of shape memory function of NiTi components through laser AM. 展开更多
关键词 additive manufacturing laser powder bed fusion gradient lattice structures deformation behavior shape memory effect
在线阅读 下载PDF
SHAPE MEMORY EFFECT OF PU IONOMERS WITH IONIC GROUPS ON HARD-SEGMENTS 被引量:6
8
作者 胡金莲 Kwok-wing Yeung 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2006年第2期173-186,共14页
SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) wer... SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) were measured with cyclic tensile test and strain recovery test. The relations between the structure and shape memory effect of these two series were studied with respect to the ionic group content and the effect of neutralization. The resulting data indicate that, with the introduction of asymmetrical extender, the stress at 100% elongation is decreased for PU non-ionomer and ionomer series, especially lowered sharply for non-ionomer series; the fixation ratio of ionomer series is not affected obviously by the ionic group content; the total recovery ratio of ionomer series is decreased greatly. After sufficient relaxation time for samples stretched beforehand, the switching temperature is raised slightly, whereas the recovery ratio measured with strain recovery test method is lowered with increased DMPA content. The characterization with FT-IR, DSC, DMA elucidated that, the ordered hard domain of the two series is disrupted with the introduction of DMPA which causes more hard segments to dissolve in soft phase; ionic groups on hard segment enhance the cohesion between hard segments especially at high ionic group content and significantly facilitate the phase separation compared with the corresponding non-ionomer at moderate ionic group content. 展开更多
关键词 Polyurethane IONOMERS Cyclic thermo-mechanical investigations Shape memory effect Cyclic tensile test Strain recovery test.
在线阅读 下载PDF
A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy 被引量:6
9
作者 Chao Yu Guozheng Kang Qianhua Kan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第3期619-634,共16页
A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic defor... A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite and detwinned martensite , as well as the phase transitions occurring between each pair of phases (, , , , and are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases (A, , and and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model. 展开更多
关键词 NiTi SMAs Constitutive model Cyclic degeneration of shape memory effect Transformation-induced plasticity Reorientation-induced plasticity
在线阅读 下载PDF
Buckling-controlled two-way shape memory effect in a ring-shaped bilayer 被引量:4
10
作者 Hao Li Xiaoyan Liang Weibin Song 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第6期1217-1225,共9页
Shape memory polymers(SMPs)usually have a one-way shape memory effect.In this paper,an easy-operating method to realize a two-way shape memory effect was demonstrated in a ring-shaped bilayer structure where the two l... Shape memory polymers(SMPs)usually have a one-way shape memory effect.In this paper,an easy-operating method to realize a two-way shape memory effect was demonstrated in a ring-shaped bilayer structure where the two layers are SMPs with different thermal transition temperatures.By designing specific thermomechanical processes,the mismatched deformation between the two layers leads to a morphology change of ring-shaped bilayer structures from a smooth ring to a gear-like buckling shape under cooling and a reversible recovery to the smooth shape under heating.Such a morphology change is ascribed to occurrence and recovery of thermoelastic buckling.This method was validated by finite element simulation.We experimentally investigated the influence of pre-strain on buckling,and it was found that both the buckling occurrence and recovery temperature vary with pre-strain.Furthermore,considering a ring-shaped SMP-SMP bilayer structure,finite element analysis was conducted to study the influence of film thickness and modulus ratio of two layers on buckling behavior.The results showed that the critical buckling wavelength was greatly influenced by film thickness and modulus ratio.W e made a theoretical analysis that accorded well with the numerical results. 展开更多
关键词 Shape memory polymers Two-way shape memory effect BUCKLING Ring-shaped BILAYER
在线阅读 下载PDF
Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire 被引量:3
11
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期44-48,共5页
An intrinsic two-way shape memory effect with a fully recoverable strain of 1.0%was achieved in an as-prepared Ni50Mn37.5Sn12.5 metamagnetic shape memory microwire fabricated by Taylor-Ulitovsky method.This two-way sh... An intrinsic two-way shape memory effect with a fully recoverable strain of 1.0%was achieved in an as-prepared Ni50Mn37.5Sn12.5 metamagnetic shape memory microwire fabricated by Taylor-Ulitovsky method.This two-way shape memory effect is mainly owing to the internal stress caused by the retained martensite in austenite matrix,as revealed by transmission electron microscopy observations and highenergy X-ray diffraction experiments.After superelastic training for 30 loading/unloading cycles at room temperature,the amount of retained martensite increased and the recoverable strain of two-way shape memory effect increased significantly to 2.2%.Furthermore,a giant recoverable strain of 11.2%was attained under a bias stress of 300 MPa in the trained microwire.These properties confer this microwire great potential for micro-actuation applications. 展开更多
关键词 Metamagnetic shape memory alloys Two-way shape memory effect MICROWIRE Recoverable strain MICROSTRUCTURE
原文传递
Shape Decoupling Effects and Rotation of Deformed Halo Nuclei 被引量:3
12
作者 SUN Xiangxiang ZHOU Shangui 《原子核物理评论》 CAS CSCD 北大核心 2024年第1期75-85,共11页
With the development of radioactive-ion-beam facilities,many exotic phenomena have been discovered or predicted in the nuclei far from the stability line,including cluster structure,shell structure,deformed halo,and s... With the development of radioactive-ion-beam facilities,many exotic phenomena have been discovered or predicted in the nuclei far from the stability line,including cluster structure,shell structure,deformed halo,and shape decoupling effects.The study of exotic nuclear phenomena is at the frontier of nuclear physics nowadays.The covariant density functional theory(CDFT)is one of the most successful microscopic models in describing the structure of nuclei in almost the whole nuclear chart.Within the framework of CDFT,toward a proper treatment of deformation and weak binding,the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)has been developed.In this contribution,we review the applications and extensions of the DRHBc theory to the study of exotic nuclei.The DRHBc theory has been used to investigate the deformed halos in B,C,Ne,Na,and Mg isotopes and the theoretical descriptions are reasonably consistent with available data.A DRHBc Mass Table Collaboration has been founded,aiming at a high precision nuclear mass table with deformation and continuum effects included,which is underway.By implementing the angular momentum projection based on the DRHBc theory,the rotational excitations of deformed halos have been investigated and it is shown that the deformed halos and shape decoupling effects also exist in the low-lying rotational excitation states of deformed halo nuclei. 展开更多
关键词 exotic nuclei deformed halo shape decoupling effect nuclear mass rotational excitation density functional theory
原文传递
Effects of aging on the microstructure of a Cu-Al-Ni-Mn shape memory alloy 被引量:2
13
作者 U.Sari T.Kirindi +1 位作者 F.Ozcan M.Dikici 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第4期430-436,共7页
The influence of aging on the microstructure and mechanical properties of Cu-11.6wt%Al-3.9wt%Ni-2.5wt%Mn shape memory alloy(SMA) was studied by means of scanning electron microscopy(SEM),transmission electron micr... The influence of aging on the microstructure and mechanical properties of Cu-11.6wt%Al-3.9wt%Ni-2.5wt%Mn shape memory alloy(SMA) was studied by means of scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffractometer,and differential scanning calorimeter(DSC).Experimental results show that bainite,γ2,and α phase precipitates occur with the aging effect in the alloy.After aging at 300°C,the bainitic precipitates appear at the early stages of aging,while the precipitates of γ2 phase are observed for a longer aging time.When the aging temperature increases,the bainite gradually evolves into γ2 phase and equilibrium α phase(bcc) precipitates from the remaining parent phase.Thus,the bainite,γ2,and α phases appear,while the martensite phase disappears progressively in the alloy.The bainitic precipitates decrease the reverse transformation temperature while the γ2 phase precipitates increase these temperatures with a decrease of solute content in the retained parent phase.On the other hand,these precipitations cause an increasing in hardness of the alloy. 展开更多
关键词 copper alloys shape memory effect martensitic transformations AGING PRECIPITATES
在线阅读 下载PDF
Effect of thermal oxidation on the surface characteristics and corrosion behavior of a Ta-implanted Ti-50.6Ni shape memory alloy 被引量:2
14
作者 Sheng-nan Wang Yan Li Ting-ting Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第12期1134-1141,共8页
A NiTi shape memory alloy (SMA) modified by Ta ion implantation was subjected to oxidation treatment in air at 723 and 873 K. Atomic force microscopy (AFM), Auger electron spectroscopy (AES), and grazing inciden... A NiTi shape memory alloy (SMA) modified by Ta ion implantation was subjected to oxidation treatment in air at 723 and 873 K. Atomic force microscopy (AFM), Auger electron spectroscopy (AES), and grazing incidence X-ray diffraction (GIXRD) measurements were conducted to investigate the surface characteristics, including surface topography, elemental depth profiles, and surface phase structures. The surface roughness of the Ta-implanted NiTi increases after oxidation, and the higher the oxidation temperature is, the larger the value is. The surface of the Ta-implanted NiTi oxidized at 723 K is a nanolayer mainly composed of TiO2/Ta2O5 and TiO with depressed Ni content. The Ta-implanted NiTi oxidized at 873 K is mainly covered by rutile TiO2 in several micrometers of thickness. Potentiodynamic polarization tests indicated that the corrosion resistance of the Ta-implanted NiTi was improved after thermal oxidation at 723 K, but a negative impact was found for the Ta-implanted NiTi oxidized at 873 K. 展开更多
关键词 nickel alloys titanium alloys shape memory effect ion implantation OXIDATION corrosion resistance
在线阅读 下载PDF
EFFECT OF DYNAMIC RECRYSTALLIZATION ON SHAPE MEMORY EFFECT IN Fe-Mn-Si BASED ALLOYS 被引量:2
15
作者 L.J. Rong Y. Y. Li and C.X. Shi(Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第5期361-366,共6页
Improvement of shape, memory effect (SME) in Fe-Mn-Si based alloys has been investigated, compared with that by conventional 'training' treatment. It is found that SME in Fe-Mn-Si alloy can be greatly improved... Improvement of shape, memory effect (SME) in Fe-Mn-Si based alloys has been investigated, compared with that by conventional 'training' treatment. It is found that SME in Fe-Mn-Si alloy can be greatly improved by ausforming and 3.8%recovery strain and 2.2% complete recovery strain can be reached by ausforming at 973 K when dynamic recrystallization has just occurred. The mechanism for the improvement of SME is proposed. 展开更多
关键词 shape memory effect dynamic recrystallization Fe-Mn-Si based Alloy
在线阅读 下载PDF
Microstructure,compression property and shape memory effect of Ru-Nb high temperature shape memory alloy 被引量:1
16
作者 GAO Xin,CAI Wei,and GAO Zhiyong School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期51-55,共5页
The microstructure,phase transformation,compression property and strain recovery characteristics of equiatomic Ru-Nb high temperature shape memory alloy were investigated by means of optical microscope,X-ray diffracti... The microstructure,phase transformation,compression property and strain recovery characteristics of equiatomic Ru-Nb high temperature shape memory alloy were investigated by means of optical microscope,X-ray diffraction(XRD),differential scanning calorimetry(DSC),compression tests and transmission electron microscopy(TEM).When cooling the alloy specimen from high temperature to room temperature,β(parent phase)→β’(interphase)→β″(martensite) two step phase transformation occurs.The microstructure at room temperature shows regularly arranged band morphology with the monoclinic crystal structure.The twinning relationship between the martensite bands was determined to be(101) Type I.Reorientation and of the martensite bands inside the variant and dislocation were found during compression at room temperature.The maximum complete recovery strain is about 1.5%. 展开更多
关键词 Ru-Nb alloy phase transformation MICROSTRUCTURE shape memory effect
在线阅读 下载PDF
Dose rate effects on shape memory epoxy resin during 1 Me V electron irradiation in air 被引量:1
17
作者 Longyan Hou Yiyong Wu +2 位作者 Debin Shan Bin Guo Yingying Zong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第8期61-69,共9页
The effects of 1 Me V electron irradiation in air at a fixed accumulated dose and dose rates of 393.8,196.9,78.8,and 39.4 Gy s^(-1)on a shape memory epoxy(SMEP)resin were studied.Under low-dose-rate irradiation,accele... The effects of 1 Me V electron irradiation in air at a fixed accumulated dose and dose rates of 393.8,196.9,78.8,and 39.4 Gy s^(-1)on a shape memory epoxy(SMEP)resin were studied.Under low-dose-rate irradiation,accelerated degradation of the shape memory performance was observed;specifically,the shape recovery ratio decreased exponentially with increasing irradiation time(that is,with decreasing dose rate).In addition,the glass transition temperature of the SMEP,as measured by dynamic mechanical analysis,decreased overall with decreasing dose rate.The dose rate effects of 1 Me V electron irradiation on the SMEP were confirmed by structural analysis using electron paramagnetic resonance(EPR)spectroscopy and Fourier transform infrared(FTIR)spectroscopy.The EPR spectra showed that the concentration of free radicals increased exponentially with increasing irradiation time.Moreover,the FTIR spectra showed higher intensities of the peaks at 1660 and 1720 cm^(-1),which are attributed to stretching vibrations of amide C=O and ketone/acid C=O,at lower dose rates.The intensities of the IR peaks at 1660 and 1720 cm^(-1) increased exponentially with increasing irradiation time,and the relative intensity of the IR peak at 2926 cm^(-1)decreased exponentially with increasing irradiation time.The solid-state13 C nuclear magnetic resonance(NMR)spectra of the SMEP before and after 1 Me V electron irradiation at a dose of 1970 k Gy and a dose rate of 78.8 Gy s^(-1) indicated damage to the CH_(2)–N groups and aliphatic isopropanol segment.This result is consistent with the detection of nitrogenous free radicals,a phenoxy-type free radical,and several types of pyrolytic carbon radicals by EPR.During the subsequent propagation process,the free radicals produced at lower dose rates were more likely to react with oxygen,which was present at higher concentrations,and form the more destructive peroxy free radicals and oxidation products such as acids,amides,and ketones.The increase in peroxy free radicals at lower dose rates was thought to accelerate the degradation of the macroscopic performance of the SMEP. 展开更多
关键词 Shape memory epoxy resin Shape memory effect Electron irradiation Dose rate effect Free radical Chain scission
原文传递
Two-way Shape Memory Effect in a Ti-Ni-Nb Shape Memory Alloy with Wide Hysteresis 被引量:1
18
作者 Liming WANG Xianglong MENG Wei CAI and Liancheng ZHAO School of Materials Science and Engineering, Harbin institute of Technology, Harbin 150001, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期13-14,共2页
A two-way shape memory effect (TWSM E) in the Ti46.3Ni44.7Nb9 alloy has been systematically investigated by means of bending test and transmission electron microscopy (TEM ) observations. Based on the analysis of the ... A two-way shape memory effect (TWSM E) in the Ti46.3Ni44.7Nb9 alloy has been systematically investigated by means of bending test and transmission electron microscopy (TEM ) observations. Based on the analysis of the microstructure after training. the mechanism of TWSME in the Ti46.3 Ni44.7Nb9 alloy has been discussed. 展开更多
关键词 TI NI Two-way Shape Memory effect in a Ti-Ni-Nb Shape Memory Alloy with Wide Hysteresis WIDE
在线阅读 下载PDF
Natural diatomite particles: Size-, dose- and shape- dependent cytotoxicity and reinforcing effect on injectable bone cement 被引量:1
19
作者 Xiang Zhang Huilin Yang +2 位作者 Song Li Gaowu Qin Lei Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第6期1044-1053,共10页
Natural diatomite (DT) is the ancient deposit of diatom skeleton with many regular pores of 50-200 nm and also an abundant source of biogenic silica. Although silica is considered biologically safe and there is an i... Natural diatomite (DT) is the ancient deposit of diatom skeleton with many regular pores of 50-200 nm and also an abundant source of biogenic silica. Although silica is considered biologically safe and there is an increasing interest of using natural diatomite for biomedical applications, the toxicity information about natural diatomite is still missing. Here, cytotoxicity of natural diatomite on osteoblasts and fibroblasts were compared to hydroxyapatite and the relationships between cytotoxicity and diatomite sizes, dose, geometry or impurity were systematically investigated. Cell adhesion and interaction with diatomite particles were also fluorescently observed, The results clearly suggested a size-, dose- and shape-dependent cytotoxicity of natural diatomite. Disk-shaped diatomite particles with average size of 30μm in diameter revealed the least toxicity, while the diatomite particles with irregular shapes and sizes less than 10 μm were remarkably toxic. Diatomite particles with proper sizes were then selected to investigate the reinforcing effect on injectable calcium phosphate bone cement. Results showed that diatomite significantly improved the compressive strength of bone cement but did not alter the injectability of the cement, This work provided important biocompatibility information of natural diatomite and demonstrated the feasibility of using selected diatomite as bone implant material. 展开更多
关键词 Biocompatibility Size and shape effect Bone cement Particle Silica Kyphoplasty
原文传递
Effect of Training on Two-way Shape Memory Effect and Its Stability in a Ti-Ni-Hf High Temperature Shape Memory Alloy 被引量:1
20
作者 XianglongMENG WeiCAI +2 位作者 K.T.LAU L.M.ZHOU LianchengZHAO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第6期590-592,共3页
The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The res... The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The results indicated that the training procedure is beneficial to get the better TWSME. The two-way shape memory strain increases with increasing the training strain. And it decreases with increasing the training temperature. The TWSME obtained in the present alloy shows poorer stability compared with that obtained in the TiNi alloys. 展开更多
关键词 TiNiHf alloy High temperature shape memory alloy Two-way shape memory effect TRAINING
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部