期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
图像分割与多尺度注意力Transformer结合的真实视图三维重建
1
作者 郝森烜 肖易寒 《应用科技》 2025年第1期189-197,共9页
为了解决在真实视图上三维重建效果不佳的问题,提出图像分割与多尺度注意力Transformer结合的真实视图三维重建方法。该方法分为原始图像分割和三维重建2部分,首先从多视角真实视图中用改进的DeepLabv3+模型分割出目标图像,然后送入引... 为了解决在真实视图上三维重建效果不佳的问题,提出图像分割与多尺度注意力Transformer结合的真实视图三维重建方法。该方法分为原始图像分割和三维重建2部分,首先从多视角真实视图中用改进的DeepLabv3+模型分割出目标图像,然后送入引入多尺度注意力的Transformer模型输出重建结果。图像分割部分将原DeepLabv3+模型的主干网络换成优化的MobileNetv2网络以降低模型参数量。三维重建部分首先把由粗到细的多尺度注意力机制引入Transformer网络来聚合全局到局部的特征;再使用引入多尺度立方体注意力机制的细化器修正体素模型,提高重建精度。在ShapeNet数据集和真实视图数据集上进行验证,实验结果表明此方法可以提高真实视图三维重建的速度和精度,且优于多个重建模型。 展开更多
关键词 真实视图 三维重建 体素模型 Transformer模型 注意力机制 图像分割 DeepLabv3+模型 shapenet数据集
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部