The Southwest Tianshan is the suture zone between the Central Tianshan and the Tarim Craton.To better illustrate the subduction polarity of the Southwest Tianshan Ocean,a systematic detrital zircon LA-ICP-MS U-Pb geoc...The Southwest Tianshan is the suture zone between the Central Tianshan and the Tarim Craton.To better illustrate the subduction polarity of the Southwest Tianshan Ocean,a systematic detrital zircon LA-ICP-MS U-Pb geochronology of sedimentary rocks of the Devonian Apadaerkang Formation and the Carboniferous Akeqiayi Group of the Biedieli area in the Wushi region is the focus.Detrital zircon ages indicate that the youngest grains of the targeted quartz sandstones are Late Devonian and Early Carboniferous in age,respectively.These ages also have relatively similar age spectra,indicating a similar tectonic setting and source in the Biedieli area during the Devonian to Carboniferous.The main spectrum peaks occur at 2360,1960,810,640 and 440 Ma,with a principal age peak in the early Paleozoic(474-430 Ma),and the Central Tianshan Terrane is indicated as the main source.The detrital zircon geochronology and sedimentary characteristics of the Biedieli rocks indicate that the Paleozoic sedimentary rocks in the northern Wushi region were formed at an active continental margin,associated mainly with the early Paleozoic subduction of the South Tianshan Ocean.展开更多
The timing of the emplacement of the Weiya pluton remains controversial due to the absence of systematic and precise dating. This paper reports zircon SHRIMP U-Pb dating of different lithologic phases in the Weiya plu...The timing of the emplacement of the Weiya pluton remains controversial due to the absence of systematic and precise dating. This paper reports zircon SHRIMP U-Pb dating of different lithologic phases in the Weiya pluton, and discusses the genesis and tectonic environment. The ages of gabbro, quartz syenite, diorite porphyrite and fine-grained granite are 236±6 Ma, 246±6 Ma, 233±8 Ma and 237±8 Ma, respectively. All these phases were formed in early-middle Indosinian (Triassic) in a post-orogenic environment. In addition to underplating, intraplating of mantle-derived magmas is also a substantial mechanism for magma generation and vertical accretion of the continental crust. Granitoid rocks are important products of vertical continental accretion as underplating evolves gradually to intraplating. The existence of post-orogenic Indosinian granites shows that the middle Tianshan orogenic belt underwent an important tectonic conversion from the Paleo-Asian ocean subduction-collision system to the Paleo-Tethys ocean regime.展开更多
The Tianshan range could have been built by both late Early Paleozoicaccretion and Late Paleozoic collision events. The late Early Paleozoic Aqqikkudug-Weiya suture ismarked by Ordovician ophiolitic melange and a Silu...The Tianshan range could have been built by both late Early Paleozoicaccretion and Late Paleozoic collision events. The late Early Paleozoic Aqqikkudug-Weiya suture ismarked by Ordovician ophiolitic melange and a Silurian flysch sequence, high-pressure metamorphicrelics, and mylonitized rocks. The Central Tianshan belt could principally be an Ordovician volcanicarc; whereas the South Tianshan belt, a back-arc basin. Macro- and microstructures, along withunconformities, provide some kinematic and chronological constraints on 2-phase ductile deformation.The earlier ductile deformation occurring at ca. 400 Ma was marked by north-verging ductileshearing, yielding granulite-bearing ophiolitic melange blocks and garnet-pyroxene-facies ductiledeformation, and the later deformation, a dextral strike-slip tectonic process, occurred during theLate Carboniferous-Early Permian. Early Carboniferous molasses were deposited unconformably onpre-Carboniferous metamorphic and ductilely sheared rocks, implying the end of the early orogeny.The large-scale ductile strike-slip along the Aqqikkudug-Weiya zone was possibly caused by thesecond tectonic event, the Hercynian collision between the northern Tarim block and the southernSiberian block. Late Paleozoic granitic magmatism and superimposed structures overprinted this EarlyPaleozoic deformation belt. Results of geometric and kinematic studies suggest that the primaryframework of the Southern-Central Tianshan belt, at least the eastern part of the Tianshan belt, wasbuilt by these two phases of accretion events.展开更多
The Tianshan Carboniferous post-collisional rift volcanic rocks occur in northwestern China as a large igneous province. Based on petrogeochemical data, the Tianshan Carboniferous post-collisional rift basic lavas can...The Tianshan Carboniferous post-collisional rift volcanic rocks occur in northwestern China as a large igneous province. Based on petrogeochemical data, the Tianshan Carboniferous post-collisional rift basic lavas can be classified into two major magma types: (1) the low-Ti/Y type situated in the eastern-central Tianshan area, which exhibits low Ti/Y (<500), Ce/Yb (<15) and SiO2 (43-55%), and relatively high Fe2O3T (6.4-11.5%); (2) the high-Ti/Y type situated in the western Tianshan area, which has high Ti/Y (>500), Ce/Yb (>11) and SiO2 (49-55%), and relatively low Fe2O3T (5.8-7.8%). Elemental data suggest that chemical variations of the low-Ti/Y and high-Ti/Y lavas cannot be explained by fractional crystallization from a common parental magma. The Tianshan Carboniferous basic lavas originated most likely from an OIB-like asthenospheric mantle source (87Sr/86Sr(t) ≈ 0.703-0.705, eNd(0 = +4 to +7). The crustal contamination and continental lithospheric mantle have also contributed significantly to the formation of the basic lavas of the Tianshan Carboniferous post-collisional rift. The silicic lavas were probably generated by partial melting of the crust. The data of this study show that spatial petrogeochemical variations exist in the Carboniferous post-collisional rift volcanics province in the Tianshan region. Occurrence of the thickest volcanics dominated by tholeiitic lavas may imply that the center of the mantle-melting anomaly (mantle plume) was in the eastern Tianshan area at that time. The basic volcanic magmas in the eastern Tianshan area were generated by a relatively high degree of partial melting of the mantle source around the spinel-garnet transition zone, whereas the alkaline basaltic lavas are of the dominant magma type in the western Tianshan area, which were generated by a low degree of partial melting of the mantle source within the stable garnet region, thus the basic lavas of the western Tianshan area might have resulted from relatively thick lithosphere and low geothermal gradient.展开更多
Based on the statistics of glacier area variation measured in the Chinese Tianshan Mountains since 1960, the response of glacier area variation to climate change is discussed systematically. As a result, the total are...Based on the statistics of glacier area variation measured in the Chinese Tianshan Mountains since 1960, the response of glacier area variation to climate change is discussed systematically. As a result, the total area of the glaciers has been reduced by 11.5% in the past 50 years, which is a weighted percentage according to the glacier area variations of 10 drainage basins separated by the Glacier Inventory of China (GIC). The annual percentage of area changes (APAC) of glaciers in the Chinese Tianshan Mountains is 0.31% after the standardization of the study period. The APAC varies widely for different drainage basins, but the glaciers are in a state of rapid retreat, generally. According to the 14 meteorological sta- tions in the Chinese Tianshan Mountains, both the temperature and precipitation display a marked increasing tendency from 1960 to 2009 at a rate of 0.34℃·(10a)^-1 and 11 mm·(10a)^-1, respectively. The temperature in the dry seasons (from November to March) increases rapidly at a rate of 0.46℃·(10a)^-1, but the precipitation grows slowly at 2.3 mm·(10a)^-1. While the temperature in the wet seasons (from April to October) grows at a rate of 0.25℃·(10a)^-1, but the precipitation increases at 8.7 mm·(10a)^-1, The annual and seasonal climatic trends accelerate the retreat of glaciers.展开更多
The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-cal...The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-calcic peraluminous with a relatively high concentration of SiO2 (〉70%), high alkali contents (Na20 + K20 = 7.14%-8.56%; K20〉N20; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, St, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan.展开更多
An isochron age of 282±20 (95% conf. limit) Ma of the sulfide ores in the Huangshandong Cu-Ni sulfide deposit, the East Tianshan Mountains has been obtained through Re-Os isotopic measurement. The age implies tha...An isochron age of 282±20 (95% conf. limit) Ma of the sulfide ores in the Huangshandong Cu-Ni sulfide deposit, the East Tianshan Mountains has been obtained through Re-Os isotopic measurement. The age implies that the Cu-Ni sulfide deposit and other related deposits in the same area occurred in a Permian extensional environment of post-collision instead of Devonian-Early Carboniferous ophiolite-related oceanic or island arc environments inferred before. It shares the same ages with the orogenic and epithermal gold deposit systems in the same area. An initial 187Os/188Os ratio of 0.25±0.04 (1σ) and a γos value of 99 on average display the participation of large quantities of crustal components into the rock-forming and ore-forming system during mineralization and magmatic emplacement.展开更多
The Central Tianshan belt in northwestern China is a small Precambrian block located in the southern part of the Central Asia Orogenic Belt (CAOB), which is considered as "the most voluminous block of young contine...The Central Tianshan belt in northwestern China is a small Precambrian block located in the southern part of the Central Asia Orogenic Belt (CAOB), which is considered as "the most voluminous block of young continental crust in the world" that comprises numerous small continental blocks separated by Paleozoic magmatic arcs. The Precambrian basement of the central Tianshan Mountains is composed of volcanic rocks and associated volcano-sedimentary rocks that were intruded by granitic plutons. Geochemical analyses demonstrate that the granitic plutons and volcanic rocks were generated in the Andean-type active continental arc environment like today's Chile, and the zircon U-Pb SHRIMP dating indicates that they were developed at about 956 Ma, possibly corresponding to the subduction of the inferred Mozambique Ocean under the Baltic-African super-continent.展开更多
Thermochronological datasets for the Kyrgyz Tianshan and Siberian Altai-Sayan within Central Asia reveal a punctuated exhumation history during the Meso-Cenozoic. In this paper, the datasets for both regions are colle...Thermochronological datasets for the Kyrgyz Tianshan and Siberian Altai-Sayan within Central Asia reveal a punctuated exhumation history during the Meso-Cenozoic. In this paper, the datasets for both regions are collectively reviewed in order to speculate on the links between the Meso-Cenozoic exhumation of the continental Eurasian interior and the prevailing tectonic processes at the plate margins. Whereas most of the thermochronological data across both regions document late Jurassic -Cretaceous regional basement cooling, older landscape relics and dissecting fault zones throughout both regions preserve Triassic and Cenozoic events of rapid cooling, respectively. Triassic cooling is thought to reflect the Qiangtang-Eurasia collision and/or rifting/subsidence in the West Siberian basin. Alternatively, this cooling signal could be related with the terminal terrane-amalgamation of the Central Asian Orogenic Belt. For the Kygyz Tianshan, late Jurassic-Cretaceous regional exhumation and Cenozoic fault reactivations can be linked with specific tectonic events during the closure of the Palaeo-Tethys and Neo-Tethys Oceans, respectively. The effect of the progressive consumption of these oceans and the associated collisions of Cimmeria and India with Eurasia probably only had a minor effect on the exhumation of the Siberian Altai-Sayan. More likely, tectonic forces from the east (present-day co- ordinates) as a result of the building and collapse of the Mongol-Okhotsk orogen and rifting in the Baikal region shaped the current Siberian Altai-Sayan topography. Although many of these hypothesised links need to be tested further, they allow a first-order insight into the dynamic response and the stress propagation pathways from the Eurasian margin into the continental interior.展开更多
Abstract The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the ...Abstract The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the Central Tianshan belt in Xinjiang, NW China and is composed of mylonitized Early Palaeozoic greywacke, volcanic rocks, ophiolitic blocks as a mélange complex, HP/LT-type bleuschist blocks and mylonitized Neoproterozoic schist, gneiss and orthogneiss. Nearly vertical mylonitic foliation and sub-horizontal stretching lineation define its strike-slip feature; various kinematic indicators, such as asymmetric folds, non-coaxial asymmetric macro- to micro-structures and C-axis fabrics of quartz grains of mylonites, suggest that it is a dextral strike-slip ductile shear zone oriented in a nearly E-W direction characterized by “flower” strusture with thrusting or extruding across the zone toward the two sides and upright folds with gently plunging hinges. The Aqqikkudug-Weiya zone experienced at least two stages of ductile shear tectonic evolution: Early Palaeozoic north vergent thrusting ductile shear and Late Carboniferous-Early Permian strike-slip deformation. The strike-slip ductile shear likely took place during Late Palaeozoic time, dated at 269±5 Ma by the40Ar/39Ar analysis on neo-muscovites. The strike-slip deformation was followed by the Hercynian violent S-type granitic magmatism. Geodynamical analysis suggests that the large-scale dextral strike-slip ductile shearing is likely the result of intracontinental adjustment deformation after the collision of the Siberian continental plate towards the northern margin of the Tarim continental plate during the Late Carboniferous. The Himalayan tectonism locally deformed the zone, marked by final uplift, brittle layer-slip and step-type thrust faults, transcurrent faults and E-W-elongated Mesozoic-Cenozoic basins.展开更多
The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and bot...The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.展开更多
Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indica...Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indicating that an intense folding and uplifting event took place. During the Triassic, this orogenic belt was strongly eroded, and basins were further developed. Starting from the Jurassic, a within-plate regional extension occurred, forming a series of Jurassic-Paleogene extensional basins in the peneplaned Tianshan region. Since the Neogene, a collision event between the Indian and the Eurasian plates that took place on the southern side of the Tianshan belt has caused a strong intra-continental orogeny, which is characterized by thrusting and folding. Extremely thick coarse conglomerate and sandy conglomerate of the Xiyu Formation of Neogene System were accumulated unconformably on the Tianshan piedmont. Studies have revealed that the strong compression caused by the Indian-Eurasian collision had a profound influence over the orogenic belt in the hinterland, and MesozoiC-Cenozoic brittle deformed structures superposed on the ductile deformed Paleozoic rocks. The Mesozoic extensional basins were converted into Cenozoic compressional basins. The deformation in the basins is featured by step thrusts and fault-related folds. Statistics of joints show that the principal compressive stress since the Neogene is in a N-S direction. Meanwhile, owing to the underthrusting of the basin toward the orogenic belt, the Paleozoic strata were thrust on the Meso-Cenozoic rocks as tectonic slices, revealing distinct kinematic features in different geologic units. The basin-range coupling zones are characterized by intensive compression, folding and thrusting, accompanied by local sub-E-W-trending strike-slip faults. In the Tianshan region, Cenozoic thrusting is the most common basin-range coupling mode. The folding and faulting of Mesozoic sedimentary rocks, spontaneous combustion of Jurassic coal layers and formation of sintered rocks, the Cenozoic earthquakes and active faulting, and the unique mosaic pattern of basin-range framework of Xinjiang are all products of tectonism since the Neogene.展开更多
The Bayan Gol ophiolite fragment is a portion of the North Tianshan Early Carboniferous ophiolite belt. This ophiolite belt represents a geological record of an Early Carboniferous 'Red Sea type' ocean basin t...The Bayan Gol ophiolite fragment is a portion of the North Tianshan Early Carboniferous ophiolite belt. This ophiolite belt represents a geological record of an Early Carboniferous 'Red Sea type' ocean basin that was developed on the northern margin of the Tianshan Carboniferous-Permian rift system in northwestern China. The late Early Carboniferous Bayan Gol ophiolite suite was emplaced in an Early Carboniferous rift volcano- sedimentary succession of shallow-marine to continental facies (Volcanics Unit). Ophiolitic rocks in the Bayan Gol area comprise ultramafic rocks, gabbros with associated plagiogranite veins, diorite, diabase, pillow basalts and massive lavas. The Early Carboniferous rifting and the opening process of the North Tianshan ocean basin produced mafic magmas in composition of tholeiite and minor amounts of evolved magmas. Compositions of trace elements and Nd, Sr and Pb isotopes reveal the presence of two distinct mantle sources: (1) the Early Carboniferous rift mafic lavas from the Volcanics Unit were generated by a relatively low degree of partial melting of an asthenospheric OIB-type intraplate source; (2) younger (late Early Carboniferous, ~324.8 Ma ago) mafic lavas from the Ophiolite Unit were formed in a relatively depleted MORB-like mantle source, located in the uppermost asthenosphere and then gradually mixed with melts from the asthenospheric OIB-like mantle. A slight interaction between asthenosphere-derived magmas and lithospheric mantle took place during ascent to the surface. Subsequently, the most depleted mafic lavas of the ophiolite assemblage were contaminated by upper-crustal components (seawater or carbonate crust).展开更多
A group of radiolarian fossils with a complete morphological gradient of increasing polarization are reported from upper Devonian successions in southwestern Tianshan, China. Specifically, the important transitional m...A group of radiolarian fossils with a complete morphological gradient of increasing polarization are reported from upper Devonian successions in southwestern Tianshan, China. Specifically, the important transitional mophotypes, Pylentonema transitorum sp. nov., Archocyrtium medium sp. nov. and Quadrapesus transitivus sp. nov, were found. Based on the fact that the new transitional radiolarian fossils resemble more closely to pylentonemids (cyrtoid nassellarians) than to entactinids (spumellarians) in morphology, they are assigned to pylentonemids. Pylentonemids share characters of both the Nassellaria (e.g., horned cephalis, basal opening with pylome) and Spumellaria (e.g., system of trabecular spicules), and they are thus of evolutionary significance. The evolutionary trend from spumellarians to nassellarians is characterized by (1) internal spicule: from simple trabecular spicules to complicate components (A;Ir,II;D;V;Lr,Li;MB); (2) polarization of the radiolarian tests due to rearrangment of spine, from radial to an axial symmetry; (3) the gradual formation of a basal opening (aperture, pylome, or podome); and the transition from a pseudopylome, a primative pylome with a narrow margin on the outer shell, to a true pylome rimmed with a narrow, elevated impermite wall.展开更多
Mountain glaciers, which perform a unique and irreplaceable ecological service, provide the material basis and characteristic cultural foundation of the ecological environment and sustainable socio-economic developmen...Mountain glaciers, which perform a unique and irreplaceable ecological service, provide the material basis and characteristic cultural foundation of the ecological environment and sustainable socio-economic development in arid areas. However, few studies have estimated the service value of glaciers in regulating ecological environment and providing human welfare. According to the statistics of the First and Second Chinese Glacier Inventory (FCGI/SCGI), this study analyzed the variations in glacier area and ice volume in the Tianshan Mountains in China and modeled the ecosystem service function of mountain glaciers. The service value per unit area and equivalent factor methods were combined to determine the annual value of the ecological service provided by glaciers in the study area. The results show that: (1) In the period 1970-2010, the glacier area decreased by 1274 km<sup>2</sup> (the ratio of area shrinkage was 13.9%) and the annual average decrease in ice volume was 4.08×10<sup>9</sup> m<sup>3</sup>. The increase in glacier area at high altitudes (> 5200 m) may be due to the fact that glacier accumulation caused by increasing precipitation is greater than glacier melting caused by rising temperatures. (2) The annual value of the ecological service provided by glaciers in the study area is 60.2 billion yuan. The values of climate regulation, hydrological regulation, and freshwater resource supply account for 66.4%, 21.6%, and 9.3% of the total value respectively. The annual value of the ecological service provided by hydroelectric power is 350 million yuan. (3) From a comparative analysis of the glaciers, forest, grassland and wetland ecosystems, the supply of freshwater resources/physical production and ecological regulation represent the main contributions of the four types of system, and the ecosystem service value of glaciers per unit area is higher than that of other types of ecosystem. This research will improve the understanding of the impact of glaciers on human welfare and maintenance of the ecological environment and will promote the ecological security of the cryosphere, environmental protection, and the sustainable use of resources.展开更多
In the southwestern Tianshan,the geologic ages of many strata and their depositional environments are still poorly constrained because of complex structures.The Mada'er area is located in the Kuokesaleling belt,South...In the southwestern Tianshan,the geologic ages of many strata and their depositional environments are still poorly constrained because of complex structures.The Mada'er area is located in the Kuokesaleling belt,Southwestern Tianshan.The cherts from the former Wupata'erkan Group contain abundant radiolarian fossils,including 10 species which are identified as late Devonian to early Carboniferous in age.Eleven chert samples have SiO_2 contents ranging from 88.80 wt%to 93.28 wt%, and 2.02 wt%to 3.72 wt%for Al_2O_3.The SiO_2/Al_2O_3 ratios of all samples vary from 23.84 to 46.11, much lower than those of the pure cherts(80-1400).These values suggest that the cherts contain high ratios of terrigenous materials.The Al_2O_3/(Al_2O_3+Fe_2O_3)ratios vary between 0.64 and 0.77,whereas V and Cu concentrations range from 10.92 ppm to 26.7 ppm and from 2.15 ppm to 34.1 ppm respectively. The Ti/V ratios vary from 25.53 to 44.93.The total REE concentrations of the cherts are between 30.78 ppm and 59.26 ppm,averaging 45.46 ppm.The(La/Ce)_N ratios range from 0.81 to 1.12,and 0.88-1.33 for(La/Yb)_N,averaging 1.09,which suggests a continental margin environment.Consequently,it is inferred that the cherts formed in a residual sea environment during the late Devonian to early Carboniferous time,which suggests that the collision between the Karakum-Tarim and Kazakhstan-Junggar plates did not occur at the time.In addition,the regional geological information indicates that the study area experienced a post-collision stage during the early Permian,and thus it is likely that the collision between the two plates took place in the late Carboniferous.展开更多
Petrogeochemical data are reported for silicic volcanic rocks from the Tianshan Carboniferous rift, with the aim of discussing the petrogenesis of silicic magmas. Incompatible element vs. incompatible element diagrams...Petrogeochemical data are reported for silicic volcanic rocks from the Tianshan Carboniferous rift, with the aim of discussing the petrogenesis of silicic magmas. Incompatible element vs. incompatible element diagrams display smooth positive trends for the Tianshan Carboniferous rift-related volcanic rocks; the isotope ratios of the silicic lavas [^87Sr/^86S(t)=0.699880.70532; eNd(t)=4.76-8.00; ^206pb/^204pb(t)=17.435-18.017; ^207Pb/^204Pb(t)=15.438-15.509; ^208Pb/^204Pb(t) = 37.075-37.723] encompass those of the basic lavas. These data suggest a genetic link between rhyolites and basalts, but are not definitive in establishing whether silicic rocks are related to basalts through fractional crystallization or partial melting. Geochemical modeling of incompatible vs. compatible elements excludes the possibility that silicic melts are generated by the melting of basaltic rocks, and indicates a derivation by fractional crystallization plus moderate assimilation of wall rocks (AFC) starting from intermediate rocks to silicic rocks. Continuous AFC from basalt to rhyolite, with small rates of crustal assimilation, best explains the geochemical data. The presence or absence of bimodal volcanism (the "Daly Gap") might be related to cooling rates of magma chambers. In central and eastern Tianshan, the crust was thinner and the cooling rates of the magma chamber within the crust were greater. These conditions resulted in a rapid fall in temperature within the magma reservoir and caused a narrow temperature interval over which intermediate melts formed, effectively reducing the volume of the intermediate melts.展开更多
The Wupata'erkan Group, also called Wupata'erkan Formation, distributed in the South Tianshan, Xinjiang, China, mainly consists of gray and dark gray fine-grained clastic rocks, interlayered with volcanic rock...The Wupata'erkan Group, also called Wupata'erkan Formation, distributed in the South Tianshan, Xinjiang, China, mainly consists of gray and dark gray fine-grained clastic rocks, interlayered with volcanic rocks, carbonates and cherts. Some ultra-basic rocks (blocks) punctuate the formation. The formation was variously assigned to Silurian-Middle Devonian, Silurian-Lower Devonian, and pre-Devonian, mainly based on Atrypa bodini Mansuy, Hypothyridina parallelepipedia (Brour.) and Prismatophyllum hexagonum Yoh collected from the limestone interlayers, respectively. However, radiolarian fossils obtained from 24 chert specimens of the Wupata'erkan Group, mainly include Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon, Albaillella sp. cf. A. indensis Won, Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto, Albaillella sp. and Latentifistulidae gen. et. sp. indet., are earliest Carboniferous and Late Permian. The earliest Carboniferous assemblage is characterized by Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon and Albaillella sp. cf. A. indensis Won, and the Late Permian assemblage by Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto. This new stratigraphic evidence indicates that the Wupata'erkan Group is possibly composed of rocks with different ages from Silurian to Permian, and therefore, it is probably an ophiolite melange. The discovery of Late Permian Albaillella sp. cf. A. excelsa provides more reliable evidence supporting the existence of a Permian relic ancient oceanic basin in the western part of Xinjiang South Tianshan.展开更多
Granitic rocks, widely developed in the Lamasu copper ore region, western Tianshan were formed at 390.5±7.7 Ma according to the SHRIMP zircon U-Pb dating of the plagioclase granite porphyry. Based on the regional...Granitic rocks, widely developed in the Lamasu copper ore region, western Tianshan were formed at 390.5±7.7 Ma according to the SHRIMP zircon U-Pb dating of the plagioclase granite porphyry. Based on the regional tectonic evolution and published chronological data of both diagenesis and mineralization, the Biezhentao- Kokirqin region was rolled into the orogen associated with the closure of Yili Ocean during early Devonian. The N-S-trending thrust faults were formed during this period and accompanied by the intrusion of granitic rocks. On this stage, the paleo-Asian Ocean Plate entered into the early collision orogenic phase and the plagioclase granite porphyry intruded (390.5±7.7 Ma) and replaced with limestone of the Mesoproterozoic Kusongmuqieke Group, Jixianian System and formed the early phase of skarn-type copper mineralization in the Lamasu region. Furthermore, the subduction-melting of Bayingou Ocean Plate during Carboniferous generated a deep-seated magmatic chamber in the Lamasu copper ore region which located in the northwestern part of the Paleozoic Biezhentao-Kokirqin island arc. The magmatic chamber segregated Cu-bearing magmas, which transported upward to the shallow earth crust along the faults or fractures and formed the Cu-hosting porphyry. According to the research on the characteristics of the ore deposit and the ore-forming environment as mentioned above, the Lamasu Cu-Zn deposit was characterized by the superposing of mineralization at different geological settings and it was skarn-porphyritic type.展开更多
The Yamansu belt,an important tectonic component of Eastern Tianshan Mountains,of the Central Asian Orogenic Belt,NW China hosts many Fe-(Cu)deposit.In this study,we present new zircon U-Pb geochronology and geochemic...The Yamansu belt,an important tectonic component of Eastern Tianshan Mountains,of the Central Asian Orogenic Belt,NW China hosts many Fe-(Cu)deposit.In this study,we present new zircon U-Pb geochronology and geochemical data of the volcanic rocks of Shaquanzi Formation and diorite intrusions in the Yamansu belt.The Shaquanzi Formation comprises mainly basalt,andesite/andesitic tuff,rhyolite and sub-volcanic diabase with local diorite intrusions.The volcanic rocks and diorites contain ca.315-305 Ma and ca.298 Ma zircons respectively.These rocks show calc-alkaline affinity with enrichment in large-ion lithophile elements(LILEs),light rare-earth elements(LREEs),and depletion in high field strength elements(HFSEs)in primitive mantle normalized multi-element diagrams,which resemble typical back-arc basin rocks.They show depleted mantle signature with ε_(Nd)(t)ranging from+3.1 to +5.6 for basalt;+2.1 to+4.7 for andesite;-0.2 to+1.5 for rhyolite and the ε_(Hf)(t)ranges from-0.1 to +13.0 for andesites;+5.8 to +10.7 for andesitic tuffs.We suggest that the Shaquanzi Formation basalt might have originated from a depleted,metasomatized lithospheric mantle source mixed with minor(3-5%)subduction-derived materials,whereas the andesite and rhyolite could be fractional crystallization products of the basaltic magma.The Shaquanzi Formation volcanic rocks could have formed in an intracontinental back-arc basin setting,probably via the southward subduction of the Kangguer Ocean beneath the Middle Tianshan Massif.The Yamansu mineralization belt might have undergone a continental arc to back-arc basin transition during the Late Carboniferous and the intra-continental back-arc basin might have closed in the Early Permian,marked by the emplacement of dioritic magma in the Shaquanzi belt.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42172258,42072227,U2244205)the Science and Technology Major Project of Xinjiang Uygur Autonomous Region,China(2023A03002)+2 种基金the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Grant No.2015BAB05B04)the Joint Innovation Fund of China National Uranium Co.,Ltd.,and State Key Laboratory of Nuclear Resources and Environment(Grant No.NRE2021-01)the China Geological Survey(Grant Nos.DD20242868,DZLXJK202206)。
文摘The Southwest Tianshan is the suture zone between the Central Tianshan and the Tarim Craton.To better illustrate the subduction polarity of the Southwest Tianshan Ocean,a systematic detrital zircon LA-ICP-MS U-Pb geochronology of sedimentary rocks of the Devonian Apadaerkang Formation and the Carboniferous Akeqiayi Group of the Biedieli area in the Wushi region is the focus.Detrital zircon ages indicate that the youngest grains of the targeted quartz sandstones are Late Devonian and Early Carboniferous in age,respectively.These ages also have relatively similar age spectra,indicating a similar tectonic setting and source in the Biedieli area during the Devonian to Carboniferous.The main spectrum peaks occur at 2360,1960,810,640 and 440 Ma,with a principal age peak in the early Paleozoic(474-430 Ma),and the Central Tianshan Terrane is indicated as the main source.The detrital zircon geochronology and sedimentary characteristics of the Biedieli rocks indicate that the Paleozoic sedimentary rocks in the northern Wushi region were formed at an active continental margin,associated mainly with the early Paleozoic subduction of the South Tianshan Ocean.
文摘The timing of the emplacement of the Weiya pluton remains controversial due to the absence of systematic and precise dating. This paper reports zircon SHRIMP U-Pb dating of different lithologic phases in the Weiya pluton, and discusses the genesis and tectonic environment. The ages of gabbro, quartz syenite, diorite porphyrite and fine-grained granite are 236±6 Ma, 246±6 Ma, 233±8 Ma and 237±8 Ma, respectively. All these phases were formed in early-middle Indosinian (Triassic) in a post-orogenic environment. In addition to underplating, intraplating of mantle-derived magmas is also a substantial mechanism for magma generation and vertical accretion of the continental crust. Granitoid rocks are important products of vertical continental accretion as underplating evolves gradually to intraplating. The existence of post-orogenic Indosinian granites shows that the middle Tianshan orogenic belt underwent an important tectonic conversion from the Paleo-Asian ocean subduction-collision system to the Paleo-Tethys ocean regime.
基金the supports from the National 973 Project on Westemn China (No.2001CB409804)the National Natural Science Foundation of China (grants 49772151 , 49832040)
文摘The Tianshan range could have been built by both late Early Paleozoicaccretion and Late Paleozoic collision events. The late Early Paleozoic Aqqikkudug-Weiya suture ismarked by Ordovician ophiolitic melange and a Silurian flysch sequence, high-pressure metamorphicrelics, and mylonitized rocks. The Central Tianshan belt could principally be an Ordovician volcanicarc; whereas the South Tianshan belt, a back-arc basin. Macro- and microstructures, along withunconformities, provide some kinematic and chronological constraints on 2-phase ductile deformation.The earlier ductile deformation occurring at ca. 400 Ma was marked by north-verging ductileshearing, yielding granulite-bearing ophiolitic melange blocks and garnet-pyroxene-facies ductiledeformation, and the later deformation, a dextral strike-slip tectonic process, occurred during theLate Carboniferous-Early Permian. Early Carboniferous molasses were deposited unconformably onpre-Carboniferous metamorphic and ductilely sheared rocks, implying the end of the early orogeny.The large-scale ductile strike-slip along the Aqqikkudug-Weiya zone was possibly caused by thesecond tectonic event, the Hercynian collision between the northern Tarim block and the southernSiberian block. Late Paleozoic granitic magmatism and superimposed structures overprinted this EarlyPaleozoic deformation belt. Results of geometric and kinematic studies suggest that the primaryframework of the Southern-Central Tianshan belt, at least the eastern part of the Tianshan belt, wasbuilt by these two phases of accretion events.
文摘The Tianshan Carboniferous post-collisional rift volcanic rocks occur in northwestern China as a large igneous province. Based on petrogeochemical data, the Tianshan Carboniferous post-collisional rift basic lavas can be classified into two major magma types: (1) the low-Ti/Y type situated in the eastern-central Tianshan area, which exhibits low Ti/Y (<500), Ce/Yb (<15) and SiO2 (43-55%), and relatively high Fe2O3T (6.4-11.5%); (2) the high-Ti/Y type situated in the western Tianshan area, which has high Ti/Y (>500), Ce/Yb (>11) and SiO2 (49-55%), and relatively low Fe2O3T (5.8-7.8%). Elemental data suggest that chemical variations of the low-Ti/Y and high-Ti/Y lavas cannot be explained by fractional crystallization from a common parental magma. The Tianshan Carboniferous basic lavas originated most likely from an OIB-like asthenospheric mantle source (87Sr/86Sr(t) ≈ 0.703-0.705, eNd(0 = +4 to +7). The crustal contamination and continental lithospheric mantle have also contributed significantly to the formation of the basic lavas of the Tianshan Carboniferous post-collisional rift. The silicic lavas were probably generated by partial melting of the crust. The data of this study show that spatial petrogeochemical variations exist in the Carboniferous post-collisional rift volcanics province in the Tianshan region. Occurrence of the thickest volcanics dominated by tholeiitic lavas may imply that the center of the mantle-melting anomaly (mantle plume) was in the eastern Tianshan area at that time. The basic volcanic magmas in the eastern Tianshan area were generated by a relatively high degree of partial melting of the mantle source around the spinel-garnet transition zone, whereas the alkaline basaltic lavas are of the dominant magma type in the western Tianshan area, which were generated by a low degree of partial melting of the mantle source within the stable garnet region, thus the basic lavas of the western Tianshan area might have resulted from relatively thick lithosphere and low geothermal gradient.
基金Foundation: National Natural Science Foundation of China, No.40701035 No.40631001+9 种基金 No.40571033 No.40701034 No.J0630966 Program for New Century Excellent Talents in University by the Ministry of Education, No.NCET-10-0019 Foundation for Young Innovative Scientists in Gansu Province National Basic Research Program of China, No.2010CB951003 No.2007CB411501 Knowledge Innovation Project of Chinese Academy of Sciences, No.KZCX2-YW-127 Independent Research Program of State Key Laboratory of Cryospheric Sciences of Chinese Academy of Sciences Knowledge and Technological Innovation Project of Northwest Normal University, No.NWNU-KJCXGC-03-66 Acknowledgement The authors would like to thank Arthur Wen for useful suggestions and language editing.
文摘Based on the statistics of glacier area variation measured in the Chinese Tianshan Mountains since 1960, the response of glacier area variation to climate change is discussed systematically. As a result, the total area of the glaciers has been reduced by 11.5% in the past 50 years, which is a weighted percentage according to the glacier area variations of 10 drainage basins separated by the Glacier Inventory of China (GIC). The annual percentage of area changes (APAC) of glaciers in the Chinese Tianshan Mountains is 0.31% after the standardization of the study period. The APAC varies widely for different drainage basins, but the glaciers are in a state of rapid retreat, generally. According to the 14 meteorological sta- tions in the Chinese Tianshan Mountains, both the temperature and precipitation display a marked increasing tendency from 1960 to 2009 at a rate of 0.34℃·(10a)^-1 and 11 mm·(10a)^-1, respectively. The temperature in the dry seasons (from November to March) increases rapidly at a rate of 0.46℃·(10a)^-1, but the precipitation grows slowly at 2.3 mm·(10a)^-1. While the temperature in the wet seasons (from April to October) grows at a rate of 0.25℃·(10a)^-1, but the precipitation increases at 8.7 mm·(10a)^-1, The annual and seasonal climatic trends accelerate the retreat of glaciers.
文摘The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-calcic peraluminous with a relatively high concentration of SiO2 (〉70%), high alkali contents (Na20 + K20 = 7.14%-8.56%; K20〉N20; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, St, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan.
基金the National Natural Science Foundation of China(No.40172021)the Major State Basic Research Program of the People’s Republic of China(No.G1999043211)the New Round Geological Survey Project (DKD9902001,2001BA609A-07-04).
文摘An isochron age of 282±20 (95% conf. limit) Ma of the sulfide ores in the Huangshandong Cu-Ni sulfide deposit, the East Tianshan Mountains has been obtained through Re-Os isotopic measurement. The age implies that the Cu-Ni sulfide deposit and other related deposits in the same area occurred in a Permian extensional environment of post-collision instead of Devonian-Early Carboniferous ophiolite-related oceanic or island arc environments inferred before. It shares the same ages with the orogenic and epithermal gold deposit systems in the same area. An initial 187Os/188Os ratio of 0.25±0.04 (1σ) and a γos value of 99 on average display the participation of large quantities of crustal components into the rock-forming and ore-forming system during mineralization and magmatic emplacement.
文摘The Central Tianshan belt in northwestern China is a small Precambrian block located in the southern part of the Central Asia Orogenic Belt (CAOB), which is considered as "the most voluminous block of young continental crust in the world" that comprises numerous small continental blocks separated by Paleozoic magmatic arcs. The Precambrian basement of the central Tianshan Mountains is composed of volcanic rocks and associated volcano-sedimentary rocks that were intruded by granitic plutons. Geochemical analyses demonstrate that the granitic plutons and volcanic rocks were generated in the Andean-type active continental arc environment like today's Chile, and the zircon U-Pb SHRIMP dating indicates that they were developed at about 956 Ma, possibly corresponding to the subduction of the inferred Mozambique Ocean under the Baltic-African super-continent.
基金supported by grants from the Australian Research Council(DP150101730)the Fund for Scientific Research,FWO-Vlaanderen
文摘Thermochronological datasets for the Kyrgyz Tianshan and Siberian Altai-Sayan within Central Asia reveal a punctuated exhumation history during the Meso-Cenozoic. In this paper, the datasets for both regions are collectively reviewed in order to speculate on the links between the Meso-Cenozoic exhumation of the continental Eurasian interior and the prevailing tectonic processes at the plate margins. Whereas most of the thermochronological data across both regions document late Jurassic -Cretaceous regional basement cooling, older landscape relics and dissecting fault zones throughout both regions preserve Triassic and Cenozoic events of rapid cooling, respectively. Triassic cooling is thought to reflect the Qiangtang-Eurasia collision and/or rifting/subsidence in the West Siberian basin. Alternatively, this cooling signal could be related with the terminal terrane-amalgamation of the Central Asian Orogenic Belt. For the Kygyz Tianshan, late Jurassic-Cretaceous regional exhumation and Cenozoic fault reactivations can be linked with specific tectonic events during the closure of the Palaeo-Tethys and Neo-Tethys Oceans, respectively. The effect of the progressive consumption of these oceans and the associated collisions of Cimmeria and India with Eurasia probably only had a minor effect on the exhumation of the Siberian Altai-Sayan. More likely, tectonic forces from the east (present-day co- ordinates) as a result of the building and collapse of the Mongol-Okhotsk orogen and rifting in the Baikal region shaped the current Siberian Altai-Sayan topography. Although many of these hypothesised links need to be tested further, they allow a first-order insight into the dynamic response and the stress propagation pathways from the Eurasian margin into the continental interior.
文摘Abstract The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the Central Tianshan belt in Xinjiang, NW China and is composed of mylonitized Early Palaeozoic greywacke, volcanic rocks, ophiolitic blocks as a mélange complex, HP/LT-type bleuschist blocks and mylonitized Neoproterozoic schist, gneiss and orthogneiss. Nearly vertical mylonitic foliation and sub-horizontal stretching lineation define its strike-slip feature; various kinematic indicators, such as asymmetric folds, non-coaxial asymmetric macro- to micro-structures and C-axis fabrics of quartz grains of mylonites, suggest that it is a dextral strike-slip ductile shear zone oriented in a nearly E-W direction characterized by “flower” strusture with thrusting or extruding across the zone toward the two sides and upright folds with gently plunging hinges. The Aqqikkudug-Weiya zone experienced at least two stages of ductile shear tectonic evolution: Early Palaeozoic north vergent thrusting ductile shear and Late Carboniferous-Early Permian strike-slip deformation. The strike-slip ductile shear likely took place during Late Palaeozoic time, dated at 269±5 Ma by the40Ar/39Ar analysis on neo-muscovites. The strike-slip deformation was followed by the Hercynian violent S-type granitic magmatism. Geodynamical analysis suggests that the large-scale dextral strike-slip ductile shearing is likely the result of intracontinental adjustment deformation after the collision of the Siberian continental plate towards the northern margin of the Tarim continental plate during the Late Carboniferous. The Himalayan tectonism locally deformed the zone, marked by final uplift, brittle layer-slip and step-type thrust faults, transcurrent faults and E-W-elongated Mesozoic-Cenozoic basins.
基金supported by Project 2012CB416803 of the State Key Fundamental Programthe National Scientific and Technological Supporting Key Projects (#2011BAB06B02)Geological Survey Project No. 1212011085060
文摘The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.
基金supports from the National 973 Project on western China No.2001CB409804the key project of National Natural Science Foundation of China No.49832040.
文摘Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indicating that an intense folding and uplifting event took place. During the Triassic, this orogenic belt was strongly eroded, and basins were further developed. Starting from the Jurassic, a within-plate regional extension occurred, forming a series of Jurassic-Paleogene extensional basins in the peneplaned Tianshan region. Since the Neogene, a collision event between the Indian and the Eurasian plates that took place on the southern side of the Tianshan belt has caused a strong intra-continental orogeny, which is characterized by thrusting and folding. Extremely thick coarse conglomerate and sandy conglomerate of the Xiyu Formation of Neogene System were accumulated unconformably on the Tianshan piedmont. Studies have revealed that the strong compression caused by the Indian-Eurasian collision had a profound influence over the orogenic belt in the hinterland, and MesozoiC-Cenozoic brittle deformed structures superposed on the ductile deformed Paleozoic rocks. The Mesozoic extensional basins were converted into Cenozoic compressional basins. The deformation in the basins is featured by step thrusts and fault-related folds. Statistics of joints show that the principal compressive stress since the Neogene is in a N-S direction. Meanwhile, owing to the underthrusting of the basin toward the orogenic belt, the Paleozoic strata were thrust on the Meso-Cenozoic rocks as tectonic slices, revealing distinct kinematic features in different geologic units. The basin-range coupling zones are characterized by intensive compression, folding and thrusting, accompanied by local sub-E-W-trending strike-slip faults. In the Tianshan region, Cenozoic thrusting is the most common basin-range coupling mode. The folding and faulting of Mesozoic sedimentary rocks, spontaneous combustion of Jurassic coal layers and formation of sintered rocks, the Cenozoic earthquakes and active faulting, and the unique mosaic pattern of basin-range framework of Xinjiang are all products of tectonism since the Neogene.
基金the Land and Resources Survey Project of China(Grant Nos.200113000022,200313000063) the National Namral Science Foundation of China fGrant No.40472044).
文摘The Bayan Gol ophiolite fragment is a portion of the North Tianshan Early Carboniferous ophiolite belt. This ophiolite belt represents a geological record of an Early Carboniferous 'Red Sea type' ocean basin that was developed on the northern margin of the Tianshan Carboniferous-Permian rift system in northwestern China. The late Early Carboniferous Bayan Gol ophiolite suite was emplaced in an Early Carboniferous rift volcano- sedimentary succession of shallow-marine to continental facies (Volcanics Unit). Ophiolitic rocks in the Bayan Gol area comprise ultramafic rocks, gabbros with associated plagiogranite veins, diorite, diabase, pillow basalts and massive lavas. The Early Carboniferous rifting and the opening process of the North Tianshan ocean basin produced mafic magmas in composition of tholeiite and minor amounts of evolved magmas. Compositions of trace elements and Nd, Sr and Pb isotopes reveal the presence of two distinct mantle sources: (1) the Early Carboniferous rift mafic lavas from the Volcanics Unit were generated by a relatively low degree of partial melting of an asthenospheric OIB-type intraplate source; (2) younger (late Early Carboniferous, ~324.8 Ma ago) mafic lavas from the Ophiolite Unit were formed in a relatively depleted MORB-like mantle source, located in the uppermost asthenosphere and then gradually mixed with melts from the asthenospheric OIB-like mantle. A slight interaction between asthenosphere-derived magmas and lithospheric mantle took place during ascent to the surface. Subsequently, the most depleted mafic lavas of the ophiolite assemblage were contaminated by upper-crustal components (seawater or carbonate crust).
基金This work was supported by the National Nature Science Foundation of China(No.40232019).
文摘A group of radiolarian fossils with a complete morphological gradient of increasing polarization are reported from upper Devonian successions in southwestern Tianshan, China. Specifically, the important transitional mophotypes, Pylentonema transitorum sp. nov., Archocyrtium medium sp. nov. and Quadrapesus transitivus sp. nov, were found. Based on the fact that the new transitional radiolarian fossils resemble more closely to pylentonemids (cyrtoid nassellarians) than to entactinids (spumellarians) in morphology, they are assigned to pylentonemids. Pylentonemids share characters of both the Nassellaria (e.g., horned cephalis, basal opening with pylome) and Spumellaria (e.g., system of trabecular spicules), and they are thus of evolutionary significance. The evolutionary trend from spumellarians to nassellarians is characterized by (1) internal spicule: from simple trabecular spicules to complicate components (A;Ir,II;D;V;Lr,Li;MB); (2) polarization of the radiolarian tests due to rearrangment of spine, from radial to an axial symmetry; (3) the gradual formation of a basal opening (aperture, pylome, or podome); and the transition from a pseudopylome, a primative pylome with a narrow margin on the outer shell, to a true pylome rimmed with a narrow, elevated impermite wall.
基金National Natural Science Foundation of China,No.41761108,No.41461086,No.41641003Shihezi University High-level Talents Support Program,No.CZ0227
文摘Mountain glaciers, which perform a unique and irreplaceable ecological service, provide the material basis and characteristic cultural foundation of the ecological environment and sustainable socio-economic development in arid areas. However, few studies have estimated the service value of glaciers in regulating ecological environment and providing human welfare. According to the statistics of the First and Second Chinese Glacier Inventory (FCGI/SCGI), this study analyzed the variations in glacier area and ice volume in the Tianshan Mountains in China and modeled the ecosystem service function of mountain glaciers. The service value per unit area and equivalent factor methods were combined to determine the annual value of the ecological service provided by glaciers in the study area. The results show that: (1) In the period 1970-2010, the glacier area decreased by 1274 km<sup>2</sup> (the ratio of area shrinkage was 13.9%) and the annual average decrease in ice volume was 4.08×10<sup>9</sup> m<sup>3</sup>. The increase in glacier area at high altitudes (> 5200 m) may be due to the fact that glacier accumulation caused by increasing precipitation is greater than glacier melting caused by rising temperatures. (2) The annual value of the ecological service provided by glaciers in the study area is 60.2 billion yuan. The values of climate regulation, hydrological regulation, and freshwater resource supply account for 66.4%, 21.6%, and 9.3% of the total value respectively. The annual value of the ecological service provided by hydroelectric power is 350 million yuan. (3) From a comparative analysis of the glaciers, forest, grassland and wetland ecosystems, the supply of freshwater resources/physical production and ecological regulation represent the main contributions of the four types of system, and the ecosystem service value of glaciers per unit area is higher than that of other types of ecosystem. This research will improve the understanding of the impact of glaciers on human welfare and maintenance of the ecological environment and will promote the ecological security of the cryosphere, environmental protection, and the sustainable use of resources.
基金supported by National 305 Project(2007BAB25B05,2011BAB06B02- 04)NSFC grant(40925006,40772045,40572047)111 Project(B07011)
文摘In the southwestern Tianshan,the geologic ages of many strata and their depositional environments are still poorly constrained because of complex structures.The Mada'er area is located in the Kuokesaleling belt,Southwestern Tianshan.The cherts from the former Wupata'erkan Group contain abundant radiolarian fossils,including 10 species which are identified as late Devonian to early Carboniferous in age.Eleven chert samples have SiO_2 contents ranging from 88.80 wt%to 93.28 wt%, and 2.02 wt%to 3.72 wt%for Al_2O_3.The SiO_2/Al_2O_3 ratios of all samples vary from 23.84 to 46.11, much lower than those of the pure cherts(80-1400).These values suggest that the cherts contain high ratios of terrigenous materials.The Al_2O_3/(Al_2O_3+Fe_2O_3)ratios vary between 0.64 and 0.77,whereas V and Cu concentrations range from 10.92 ppm to 26.7 ppm and from 2.15 ppm to 34.1 ppm respectively. The Ti/V ratios vary from 25.53 to 44.93.The total REE concentrations of the cherts are between 30.78 ppm and 59.26 ppm,averaging 45.46 ppm.The(La/Ce)_N ratios range from 0.81 to 1.12,and 0.88-1.33 for(La/Yb)_N,averaging 1.09,which suggests a continental margin environment.Consequently,it is inferred that the cherts formed in a residual sea environment during the late Devonian to early Carboniferous time,which suggests that the collision between the Karakum-Tarim and Kazakhstan-Junggar plates did not occur at the time.In addition,the regional geological information indicates that the study area experienced a post-collision stage during the early Permian,and thus it is likely that the collision between the two plates took place in the late Carboniferous.
基金support from the Land and Resources Survey Project of China(Grant nos.20011000022,200313000063)the National Natural Science Foundation of China(Grant No.40472044).
文摘Petrogeochemical data are reported for silicic volcanic rocks from the Tianshan Carboniferous rift, with the aim of discussing the petrogenesis of silicic magmas. Incompatible element vs. incompatible element diagrams display smooth positive trends for the Tianshan Carboniferous rift-related volcanic rocks; the isotope ratios of the silicic lavas [^87Sr/^86S(t)=0.699880.70532; eNd(t)=4.76-8.00; ^206pb/^204pb(t)=17.435-18.017; ^207Pb/^204Pb(t)=15.438-15.509; ^208Pb/^204Pb(t) = 37.075-37.723] encompass those of the basic lavas. These data suggest a genetic link between rhyolites and basalts, but are not definitive in establishing whether silicic rocks are related to basalts through fractional crystallization or partial melting. Geochemical modeling of incompatible vs. compatible elements excludes the possibility that silicic melts are generated by the melting of basaltic rocks, and indicates a derivation by fractional crystallization plus moderate assimilation of wall rocks (AFC) starting from intermediate rocks to silicic rocks. Continuous AFC from basalt to rhyolite, with small rates of crustal assimilation, best explains the geochemical data. The presence or absence of bimodal volcanism (the "Daly Gap") might be related to cooling rates of magma chambers. In central and eastern Tianshan, the crust was thinner and the cooling rates of the magma chamber within the crust were greater. These conditions resulted in a rapid fall in temperature within the magma reservoir and caused a narrow temperature interval over which intermediate melts formed, effectively reducing the volume of the intermediate melts.
基金the National Natural Science Foundation of China(Grant 40072077) the Tarim Oil Field Company.PetroChina(Grant 2098050230).
文摘The Wupata'erkan Group, also called Wupata'erkan Formation, distributed in the South Tianshan, Xinjiang, China, mainly consists of gray and dark gray fine-grained clastic rocks, interlayered with volcanic rocks, carbonates and cherts. Some ultra-basic rocks (blocks) punctuate the formation. The formation was variously assigned to Silurian-Middle Devonian, Silurian-Lower Devonian, and pre-Devonian, mainly based on Atrypa bodini Mansuy, Hypothyridina parallelepipedia (Brour.) and Prismatophyllum hexagonum Yoh collected from the limestone interlayers, respectively. However, radiolarian fossils obtained from 24 chert specimens of the Wupata'erkan Group, mainly include Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon, Albaillella sp. cf. A. indensis Won, Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto, Albaillella sp. and Latentifistulidae gen. et. sp. indet., are earliest Carboniferous and Late Permian. The earliest Carboniferous assemblage is characterized by Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon and Albaillella sp. cf. A. indensis Won, and the Late Permian assemblage by Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto. This new stratigraphic evidence indicates that the Wupata'erkan Group is possibly composed of rocks with different ages from Silurian to Permian, and therefore, it is probably an ophiolite melange. The discovery of Late Permian Albaillella sp. cf. A. excelsa provides more reliable evidence supporting the existence of a Permian relic ancient oceanic basin in the western part of Xinjiang South Tianshan.
基金the National Natural Science Foundation (No.40573028);the National Scientific and Technological Supporting Key Projects (No.2006 BAB07B08-01) ;the Geological Survey Projects (No.1212010634001).
文摘Granitic rocks, widely developed in the Lamasu copper ore region, western Tianshan were formed at 390.5±7.7 Ma according to the SHRIMP zircon U-Pb dating of the plagioclase granite porphyry. Based on the regional tectonic evolution and published chronological data of both diagenesis and mineralization, the Biezhentao- Kokirqin region was rolled into the orogen associated with the closure of Yili Ocean during early Devonian. The N-S-trending thrust faults were formed during this period and accompanied by the intrusion of granitic rocks. On this stage, the paleo-Asian Ocean Plate entered into the early collision orogenic phase and the plagioclase granite porphyry intruded (390.5±7.7 Ma) and replaced with limestone of the Mesoproterozoic Kusongmuqieke Group, Jixianian System and formed the early phase of skarn-type copper mineralization in the Lamasu region. Furthermore, the subduction-melting of Bayingou Ocean Plate during Carboniferous generated a deep-seated magmatic chamber in the Lamasu copper ore region which located in the northwestern part of the Paleozoic Biezhentao-Kokirqin island arc. The magmatic chamber segregated Cu-bearing magmas, which transported upward to the shallow earth crust along the faults or fractures and formed the Cu-hosting porphyry. According to the research on the characteristics of the ore deposit and the ore-forming environment as mentioned above, the Lamasu Cu-Zn deposit was characterized by the superposing of mineralization at different geological settings and it was skarn-porphyritic type.
基金financially supported by the Chinese National Basic Research 973-Program(No.2014CB440802)Project No.IS-2353 of GIGCAS
文摘The Yamansu belt,an important tectonic component of Eastern Tianshan Mountains,of the Central Asian Orogenic Belt,NW China hosts many Fe-(Cu)deposit.In this study,we present new zircon U-Pb geochronology and geochemical data of the volcanic rocks of Shaquanzi Formation and diorite intrusions in the Yamansu belt.The Shaquanzi Formation comprises mainly basalt,andesite/andesitic tuff,rhyolite and sub-volcanic diabase with local diorite intrusions.The volcanic rocks and diorites contain ca.315-305 Ma and ca.298 Ma zircons respectively.These rocks show calc-alkaline affinity with enrichment in large-ion lithophile elements(LILEs),light rare-earth elements(LREEs),and depletion in high field strength elements(HFSEs)in primitive mantle normalized multi-element diagrams,which resemble typical back-arc basin rocks.They show depleted mantle signature with ε_(Nd)(t)ranging from+3.1 to +5.6 for basalt;+2.1 to+4.7 for andesite;-0.2 to+1.5 for rhyolite and the ε_(Hf)(t)ranges from-0.1 to +13.0 for andesites;+5.8 to +10.7 for andesitic tuffs.We suggest that the Shaquanzi Formation basalt might have originated from a depleted,metasomatized lithospheric mantle source mixed with minor(3-5%)subduction-derived materials,whereas the andesite and rhyolite could be fractional crystallization products of the basaltic magma.The Shaquanzi Formation volcanic rocks could have formed in an intracontinental back-arc basin setting,probably via the southward subduction of the Kangguer Ocean beneath the Middle Tianshan Massif.The Yamansu mineralization belt might have undergone a continental arc to back-arc basin transition during the Late Carboniferous and the intra-continental back-arc basin might have closed in the Early Permian,marked by the emplacement of dioritic magma in the Shaquanzi belt.