Comprehensive quantitative evaluation of shale gas content and the controlling factors in different occurrence states is of great significance for accurately assessing gas-bearing capacity and providing effective well...Comprehensive quantitative evaluation of shale gas content and the controlling factors in different occurrence states is of great significance for accurately assessing gas-bearing capacity and providing effective well-production strategies. A total of 122 core samples from well JY-A in the Fuling shale gas field were studied to reveal the characteristics of S_1 l shale,15 of which were selected to further predict the shale gas content in different occurrence states, which are dependent on geological factors in the thermal evolution process. Geological parameters were researched by a number of laboratory programs, and the factors influential in controlling shale gas content were extracted by both PCA and GRA methods and prediction models were confirmed by the BE method using SPSS software. Results reveal that the adsorbed gas content is mainly controlled by TOC, Ro, SSA, PD and pyrite content, and the free gas content is mainly controlled by S_2, quartz content, gas saturation and formation pressure for S_1 l in well JY-A. Three methods, including the on-site gas desorption method, the empirical formula method, and the multiple regression analysis method were used in combination to evaluate the shale gas capacity of well JY-A, all of which show that the overall shale gas content of well JY-A is in the range of 2.0–5.0 m^3/t and that the free gas ratio is about 50%, lower than that of well JY-1. Cause analysis further confirms the tectonics and preservation conditions of S_1 l in the geological processes, especially the influence of eastern boundary faults on well JY-A, as the fundamental reasons for the differences in shale gas enrichment in the Jiaoshiba area.展开更多
The microscopic occurrence characteristics primarily constrain the enrichment and mobility of shale oil.This study collected the lacustrine shales from the Palaeogene Funing Formation in the Gaoyou Sag, Subei Basin. C...The microscopic occurrence characteristics primarily constrain the enrichment and mobility of shale oil.This study collected the lacustrine shales from the Palaeogene Funing Formation in the Gaoyou Sag, Subei Basin. Conventional and multistage Rock-Eval, scanning electron microscopy, and nuclear magnetic resonance(NMR) T1-T2were performed to analyze the contents and occurrence characteristics of shale oil. Low-temperature nitrogen adsorption-desorption(LTNA/D) experiments were conducted on the shales before and after extraction. The relationships between shale oil occurrence with organic matter and pore structures were then discussed. Predominantly, the shale oil in the Funing Formation is found within fractures, with secondary occurrences in interparticle pores linked to brittle minerals and sizeable intraparticle pores associated with clay minerals. The selected shales can be categorized into two types based on the nitrogen isotherms. Type A shales are characterized by high contents of felsic and calcareous minerals but low clay minerals, with larger TOC and shale oil values. Conversely, Type B shales are marked by abundant clay minerals but diminished TOC and shale oil contents. The lower BET specific surface area(SSA), larger average pore diameter, and simpler pore surfaces and pore structures lead to the Type A shales being more conducive to shale oil enrichment and mobility. Shale oil content is predominantly governed by the abundance of organic matter, while an overabundance of organic matter typically equates to a reduced ratio of free oil and diminished fluidity. The BET SSA, volumes of pores less than 25 and 100 nm at extracted state all correlate negatively with total and adsorbed oil contents but display no correlation with free oil, while they have positive relationships with capillary-bound water.Consequently, pore water is mainly saturated in micropores(<25 nm) and minipores(25-100 nm), as well as adsorbed oil, while free oil, i.e., bound and movable oil, primarily exists in mesopores(100-1000 nm) and macropores(>1000 nm). These findings may enhance the understanding of the microscopic occurrence characteristics of shale oil and will contribute to guide resource estimation and shale oil sweet spot exploitation in the Gaoyou Sag, Subei Basin.展开更多
Pore structure characteristics,gas content,and micro-scale gas occurrence mechanisms were investigated in the Shan_(2)^(3)sub-member marine-continental transitional shale of the southeastern margin of the Ordos Basin ...Pore structure characteristics,gas content,and micro-scale gas occurrence mechanisms were investigated in the Shan_(2)^(3)sub-member marine-continental transitional shale of the southeastern margin of the Ordos Basin using scanning electron microscope images,lowtemperature N_(2)/CO_(2)adsorption and high-pressure mercury intrusion,methane isothermal adsorption experiments,and CH4-saturated nuclear magnetic resonance(NMR).Two distinct shale types were identified:organic pore-rich shale(Type OP)and microfracture-rich shale(Type M).The Type OP shale exhibited relatively well-developed organic matter pores,while the Type M shale was primarily characterized by a high degree of microfracture development.An experimental method combining methane isothermal adsorption on crushed samples and CH4-saturated NMR of plug samples was proposed to determine the adsorbed gas,free gas,and total gas content under high temperature and pressure conditions.There were four main research findings.(1)Marine-continental transitional shale exhibited substantial total gas content in situ,ranging from 2.58 to 5.73 cm^(3)/g,with an average of 4.35 cm^(3)/g.The adsorbed gas primarily resided in organic matter pores through micropore filling and multilayer adsorption,followed by multilayer adsorption in clay pores.(2)The changes in adsorbed and free pore volumes can be divided into four stages.Pores of<5 nm exclusively contain adsorbed gas,while those of 5-20 nm have a high proportion of adsorbed gas alongside free gas.Pores ranging from 20 to 100 nm have a high proportion of free gas and few adsorbed gas,while pores of>100 nm and microfractures are almost predominantly free gas.(3)The proportion of adsorbed gas in Type OP shale exceeds that in Type M,reaching 66%.(4)Methane adsorbed in Type OP shale demonstrates greater desorption capability,suggesting a potential for enhanced stable production,which finds support in existing production well data.However,it must be emphasized that high-gas-bearing intervals in both types present valuable opportunities for exploration and development.These data may support future model validations and enhance confidence in exploring and developing marine-continental transitional shale gas.展开更多
Occurrence and mobility of shale oil are prerequisites for evaluating shale oil reserves and prioritizing exploration targets,particularly for heterogeneous lacustrine shales.The Qingshankou Formation in the Gulong Sa...Occurrence and mobility of shale oil are prerequisites for evaluating shale oil reserves and prioritizing exploration targets,particularly for heterogeneous lacustrine shales.The Qingshankou Formation in the Gulong Sag,Songliao Basin is a classic lacustrine pure shale reservoir that contains abundant shale oil resources.The predicted geological reserves of the shale are 1.268×10^(9) t.In this study,field emission scanning electron microscope(FE-SEM),the modular automated processing system(MAPS),pyrolysisgas chromatography(Py-GC),low-pressure nitrogen gas adsorption(LPNA),Soxhlet extraction,pyrolysis,and 2-D nuclear magnetic resonance(NMR)were integrated to describe the shale oil components,microscopic occurrence,mobility,and the effective pore size distribution.Meanwhile,the related controlling factors are discussed.The shale oil in the Qingshankou Fm exists dominantly in the matrix pores of the clay minerals,with small amounts distributed in the intergranular pores of terrigenous clastic grains,intercrystalline pores of pyrite,intragranular pores of ostracod shells,and micro-fractures.Shale oil is distributed in the pore spaces of variable sizes in different lithofacies.The clay mineral-laminated shales are characterized by the broadest range of pore size and largest volume of pore spaces with shale oil distribution,while the ostracod-laminated shales have limited pore spaces retaining oil.Furthermore,the proposed integrated analysis evaluates the shale oil molecules existing in two states:movable,and adsorbed oil,respectively.The result illustrates that movable oil takes up 30.6%e79.4%of the total residual oil.TOC,mineral composition,and pore structures of the shale joint together to control the states and mobility of the shale oil.TOC values are positively correlated with the quantities of shale oil regardless of the state of oil.The mineral components significantly impact the state of shale oil.Noticeable differences in the states of oil were observed following the changing types of minerals,possibly due to their difference in adsorption capacity and wettability.Clay minerals attract more adsorbed oil than movable oil.Felsic minerals generally decrease the occurrence of total and adsorbed oil.Carbonate plays a positive role in hydrocarbon retention of all the shale oil states.As for the pore structure,the average pore size exerts a critical impact on the total,movable,and adsorbed oil content.The total pore volume and specific surface area of shales play a principal role in controlling the total yields and amounts of adsorbed oil.This research improves the understanding of the occurrence characteristics and enrichment mechanisms of shale oil in terrestrial pure shales and provides a reference for locating favorable shale oil exploration areas.展开更多
In China, hot researches on shale oil were raised by the important breakthrough of shale oil in America. Obviously, the first important issue is the actual shale oil resource potential of China, and the selection of t...In China, hot researches on shale oil were raised by the important breakthrough of shale oil in America. Obviously, the first important issue is the actual shale oil resource potential of China, and the selection of the key appraisement parameter is vital to the shale oil resource amount. Among the appraisement parameters, the oil content parameter(S1) is the key one, but the evaluation result is generally lower because of light hydrocarbon losing and heavy hydrocarbon handling. And the more important thing is that the light hydrocarbon with small molecular weight is more recoverable, and therefore its amount is important to the total shale oil yields. Based on pyrolysis experiments and the kinetic model of hydrocarbon generation, correction factors and a model of light hydrocarbon losing and heavy hydrocarbon handling were established. The results show that the correction factor of heavy hydrocarbon handling is 3.2, and that of light hydrocarbon losing is controlled by kerogen type, maturity and hydrocarbon generation environment(closed or open).展开更多
Shale gas resources are considered to be extremely abundant in southern China,which has dedicated considerable attention to shale gas exploration in recent years.Exploration of shale gas has considerably progressed an...Shale gas resources are considered to be extremely abundant in southern China,which has dedicated considerable attention to shale gas exploration in recent years.Exploration of shale gas has considerably progressed and several breakthroughs have been made in China.However,shale gas explorations are still scarce.Summary and detailed analysis studies on black shale reservoirs are still to be performed for many areas.This lack of information slows the progress of shale gas explorations and results in low quantities of stored black shale.The Carboniferous Dawuba Formation,which is widely distributed and considerably thick,is one of the black shale formations targeted for shale gas exploration in southern China in the recent years.The acquisition and analysis of total organic carbon,vitrinite reflectance,types of organic matter,mineral composition,porosity,and permeability are basic but important processes.In addition,we analyzed the microscopic pores present in the shale.This study also showesd the good gas content of the Dawuba Formation,as well as the geological factors affecting its gas content and other characteristics.To understand the prospect of exploration,we compared this with other shale reservoirs which have been already successfully explored for gas.Our comparison showesd that those shale reservoirs have similar but not identical geological characteristics.展开更多
The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required ...The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required to heat shale,its economic feasibility is still a matter of debate and has yet to be convincingly demonstrated quantitatively.Based on the energy conservation law,the energy acquisition of oil and gas generation and the energy consumption of organic matter cracking,shale heat-absorption,and surrounding rock heat dissipation during in situ heating were evaluated in this study.The energy consumption ratios for different conditions were determined,and the factors that influence them were analyzed.The results show that the energy consumption ratio increases rapidly with increasing total organic carbon(TOC)content.For oil-prone shales,the TOC content corresponding to an energy consumption ratio of 3 is approximately 4.2%.This indicates that shale with a high TOC content can be expected to reduce the project cost through large-scale operation,making the energy consumption ratio after consideration of the project cost greater than 1.In situ heating and upgrading technology can achieve economic benefits.The main methods for improving the economic feasibility by analyzing factors that influence the energy consumption ratio include the following:(1)exploring technologies that efficiently heat shale but reduce the heat dissipation of surrounding rocks,(2)exploring technologies for efficient transformation of organic matter into oil and gas,i.e.,exploring technologies with catalytic effects,or the capability to reduce in situ heating time,and(3)establishing a horizontal well deployment technology that comprehensively considers the energy consumption ratio,time cost,and engineering cost.展开更多
Cryogenian Datangpo Formation was deposited during the interglacial time between the Sturtian and Marinoan ice ages. We studied nitrogen isotope compositions and contents of Mo of the black shales from the basal Datan...Cryogenian Datangpo Formation was deposited during the interglacial time between the Sturtian and Marinoan ice ages. We studied nitrogen isotope compositions and contents of Mo of the black shales from the basal Datangpo Formation in northeastern Guizhou, South China, for an attempt to reconstruct the marine redox change and nitrogen cycle during the interglacial time. Based on lithostratigraphy as well as geochemical profiles, the basal black shales can be divided into four intervals: Interval 1 has the lowest δ^(15)N value(+5.0‰); in interval 2, δ^(15)N values vary between +6.4‰ and +7.4‰(the first peak); interval 3 records stable values of δ^(15)N around +6‰; and interval 4 is characterized by its higher δ^(15)N values, between +6.7‰ and +7.8‰(the second peak). The values of enrichment factor of Mo decrease from 56.8 to 2.6 with the ascending stratigraphic trend. It indicated that immediately after the Sturtian glaciations, the marine seawater above the transitional zone between the shelf to slope of the southern margin of the Yangtze Platform was stratified, with shallow seawater being oxic but deep water being sulfidic. Subsequently, high denitrification rates prevailed in expanded suboxic areas in spite of a short emergence of an oxic condition in the surface seawater, and the deep seawaters were still anoxic or even euxinic.展开更多
基金financially supported by the Natural Science Foundation of China (NSFC Grant 41572106)+1 种基金the National Science and Technology Major Project "The enrichment conditions, evaluation technology and application of shale gas in the Sichuan Basin and its periphery" (Item No. 2017ZX05035002-006)State Key Laboratory of oil and gas resources and exploration, Chinese University of Petroleum-Beijing
文摘Comprehensive quantitative evaluation of shale gas content and the controlling factors in different occurrence states is of great significance for accurately assessing gas-bearing capacity and providing effective well-production strategies. A total of 122 core samples from well JY-A in the Fuling shale gas field were studied to reveal the characteristics of S_1 l shale,15 of which were selected to further predict the shale gas content in different occurrence states, which are dependent on geological factors in the thermal evolution process. Geological parameters were researched by a number of laboratory programs, and the factors influential in controlling shale gas content were extracted by both PCA and GRA methods and prediction models were confirmed by the BE method using SPSS software. Results reveal that the adsorbed gas content is mainly controlled by TOC, Ro, SSA, PD and pyrite content, and the free gas content is mainly controlled by S_2, quartz content, gas saturation and formation pressure for S_1 l in well JY-A. Three methods, including the on-site gas desorption method, the empirical formula method, and the multiple regression analysis method were used in combination to evaluate the shale gas capacity of well JY-A, all of which show that the overall shale gas content of well JY-A is in the range of 2.0–5.0 m^3/t and that the free gas ratio is about 50%, lower than that of well JY-1. Cause analysis further confirms the tectonics and preservation conditions of S_1 l in the geological processes, especially the influence of eastern boundary faults on well JY-A, as the fundamental reasons for the differences in shale gas enrichment in the Jiaoshiba area.
基金supported by the National Natural Science Foundation of China(42302160)the Sanya City Science and Technology Innovation Project(2022KJCX51)the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions(2022KJ060).
文摘The microscopic occurrence characteristics primarily constrain the enrichment and mobility of shale oil.This study collected the lacustrine shales from the Palaeogene Funing Formation in the Gaoyou Sag, Subei Basin. Conventional and multistage Rock-Eval, scanning electron microscopy, and nuclear magnetic resonance(NMR) T1-T2were performed to analyze the contents and occurrence characteristics of shale oil. Low-temperature nitrogen adsorption-desorption(LTNA/D) experiments were conducted on the shales before and after extraction. The relationships between shale oil occurrence with organic matter and pore structures were then discussed. Predominantly, the shale oil in the Funing Formation is found within fractures, with secondary occurrences in interparticle pores linked to brittle minerals and sizeable intraparticle pores associated with clay minerals. The selected shales can be categorized into two types based on the nitrogen isotherms. Type A shales are characterized by high contents of felsic and calcareous minerals but low clay minerals, with larger TOC and shale oil values. Conversely, Type B shales are marked by abundant clay minerals but diminished TOC and shale oil contents. The lower BET specific surface area(SSA), larger average pore diameter, and simpler pore surfaces and pore structures lead to the Type A shales being more conducive to shale oil enrichment and mobility. Shale oil content is predominantly governed by the abundance of organic matter, while an overabundance of organic matter typically equates to a reduced ratio of free oil and diminished fluidity. The BET SSA, volumes of pores less than 25 and 100 nm at extracted state all correlate negatively with total and adsorbed oil contents but display no correlation with free oil, while they have positive relationships with capillary-bound water.Consequently, pore water is mainly saturated in micropores(<25 nm) and minipores(25-100 nm), as well as adsorbed oil, while free oil, i.e., bound and movable oil, primarily exists in mesopores(100-1000 nm) and macropores(>1000 nm). These findings may enhance the understanding of the microscopic occurrence characteristics of shale oil and will contribute to guide resource estimation and shale oil sweet spot exploitation in the Gaoyou Sag, Subei Basin.
基金the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance,China(No.2020CX030101)the National Natural Science Foundation of China(No.42222209)the Scientific Research and Technological Development Program of CNPC,China(No.2023ZZ0801).
文摘Pore structure characteristics,gas content,and micro-scale gas occurrence mechanisms were investigated in the Shan_(2)^(3)sub-member marine-continental transitional shale of the southeastern margin of the Ordos Basin using scanning electron microscope images,lowtemperature N_(2)/CO_(2)adsorption and high-pressure mercury intrusion,methane isothermal adsorption experiments,and CH4-saturated nuclear magnetic resonance(NMR).Two distinct shale types were identified:organic pore-rich shale(Type OP)and microfracture-rich shale(Type M).The Type OP shale exhibited relatively well-developed organic matter pores,while the Type M shale was primarily characterized by a high degree of microfracture development.An experimental method combining methane isothermal adsorption on crushed samples and CH4-saturated NMR of plug samples was proposed to determine the adsorbed gas,free gas,and total gas content under high temperature and pressure conditions.There were four main research findings.(1)Marine-continental transitional shale exhibited substantial total gas content in situ,ranging from 2.58 to 5.73 cm^(3)/g,with an average of 4.35 cm^(3)/g.The adsorbed gas primarily resided in organic matter pores through micropore filling and multilayer adsorption,followed by multilayer adsorption in clay pores.(2)The changes in adsorbed and free pore volumes can be divided into four stages.Pores of<5 nm exclusively contain adsorbed gas,while those of 5-20 nm have a high proportion of adsorbed gas alongside free gas.Pores ranging from 20 to 100 nm have a high proportion of free gas and few adsorbed gas,while pores of>100 nm and microfractures are almost predominantly free gas.(3)The proportion of adsorbed gas in Type OP shale exceeds that in Type M,reaching 66%.(4)Methane adsorbed in Type OP shale demonstrates greater desorption capability,suggesting a potential for enhanced stable production,which finds support in existing production well data.However,it must be emphasized that high-gas-bearing intervals in both types present valuable opportunities for exploration and development.These data may support future model validations and enhance confidence in exploring and developing marine-continental transitional shale gas.
基金funded by the National Natural Science Foundation of China(Project 42090025 and 42202152)Heilongjiang Province open competition projects:“Research on the shale oil phase state,seepage mechanism,and integrated geologicalengineering stimulation technology in the Gulong Sag”and“Research on the diagenetic dynamic evolution process and its coupling relationship with pores and fractures”.
文摘Occurrence and mobility of shale oil are prerequisites for evaluating shale oil reserves and prioritizing exploration targets,particularly for heterogeneous lacustrine shales.The Qingshankou Formation in the Gulong Sag,Songliao Basin is a classic lacustrine pure shale reservoir that contains abundant shale oil resources.The predicted geological reserves of the shale are 1.268×10^(9) t.In this study,field emission scanning electron microscope(FE-SEM),the modular automated processing system(MAPS),pyrolysisgas chromatography(Py-GC),low-pressure nitrogen gas adsorption(LPNA),Soxhlet extraction,pyrolysis,and 2-D nuclear magnetic resonance(NMR)were integrated to describe the shale oil components,microscopic occurrence,mobility,and the effective pore size distribution.Meanwhile,the related controlling factors are discussed.The shale oil in the Qingshankou Fm exists dominantly in the matrix pores of the clay minerals,with small amounts distributed in the intergranular pores of terrigenous clastic grains,intercrystalline pores of pyrite,intragranular pores of ostracod shells,and micro-fractures.Shale oil is distributed in the pore spaces of variable sizes in different lithofacies.The clay mineral-laminated shales are characterized by the broadest range of pore size and largest volume of pore spaces with shale oil distribution,while the ostracod-laminated shales have limited pore spaces retaining oil.Furthermore,the proposed integrated analysis evaluates the shale oil molecules existing in two states:movable,and adsorbed oil,respectively.The result illustrates that movable oil takes up 30.6%e79.4%of the total residual oil.TOC,mineral composition,and pore structures of the shale joint together to control the states and mobility of the shale oil.TOC values are positively correlated with the quantities of shale oil regardless of the state of oil.The mineral components significantly impact the state of shale oil.Noticeable differences in the states of oil were observed following the changing types of minerals,possibly due to their difference in adsorption capacity and wettability.Clay minerals attract more adsorbed oil than movable oil.Felsic minerals generally decrease the occurrence of total and adsorbed oil.Carbonate plays a positive role in hydrocarbon retention of all the shale oil states.As for the pore structure,the average pore size exerts a critical impact on the total,movable,and adsorbed oil content.The total pore volume and specific surface area of shales play a principal role in controlling the total yields and amounts of adsorbed oil.This research improves the understanding of the occurrence characteristics and enrichment mechanisms of shale oil in terrestrial pure shales and provides a reference for locating favorable shale oil exploration areas.
基金supported by "the Fundamental Research Funds for the Central Universities" (14CX05017A)the Natural Science Foundation of China (41330313)+1 种基金Program for New Century Excellent Talents in Heilongjiang Provincial University (1252-NCET-012)CNPC Innovation Foundation (2011D-5006-0101)
文摘In China, hot researches on shale oil were raised by the important breakthrough of shale oil in America. Obviously, the first important issue is the actual shale oil resource potential of China, and the selection of the key appraisement parameter is vital to the shale oil resource amount. Among the appraisement parameters, the oil content parameter(S1) is the key one, but the evaluation result is generally lower because of light hydrocarbon losing and heavy hydrocarbon handling. And the more important thing is that the light hydrocarbon with small molecular weight is more recoverable, and therefore its amount is important to the total shale oil yields. Based on pyrolysis experiments and the kinetic model of hydrocarbon generation, correction factors and a model of light hydrocarbon losing and heavy hydrocarbon handling were established. The results show that the correction factor of heavy hydrocarbon handling is 3.2, and that of light hydrocarbon losing is controlled by kerogen type, maturity and hydrocarbon generation environment(closed or open).
基金the financial support provided by the 1:50000 Shale Gas Geological Survey of Southern Chinathe Investigation and Evaluation of Shale Gas Resources in Guizhou Province
文摘Shale gas resources are considered to be extremely abundant in southern China,which has dedicated considerable attention to shale gas exploration in recent years.Exploration of shale gas has considerably progressed and several breakthroughs have been made in China.However,shale gas explorations are still scarce.Summary and detailed analysis studies on black shale reservoirs are still to be performed for many areas.This lack of information slows the progress of shale gas explorations and results in low quantities of stored black shale.The Carboniferous Dawuba Formation,which is widely distributed and considerably thick,is one of the black shale formations targeted for shale gas exploration in southern China in the recent years.The acquisition and analysis of total organic carbon,vitrinite reflectance,types of organic matter,mineral composition,porosity,and permeability are basic but important processes.In addition,we analyzed the microscopic pores present in the shale.This study also showesd the good gas content of the Dawuba Formation,as well as the geological factors affecting its gas content and other characteristics.To understand the prospect of exploration,we compared this with other shale reservoirs which have been already successfully explored for gas.Our comparison showesd that those shale reservoirs have similar but not identical geological characteristics.
文摘The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required to heat shale,its economic feasibility is still a matter of debate and has yet to be convincingly demonstrated quantitatively.Based on the energy conservation law,the energy acquisition of oil and gas generation and the energy consumption of organic matter cracking,shale heat-absorption,and surrounding rock heat dissipation during in situ heating were evaluated in this study.The energy consumption ratios for different conditions were determined,and the factors that influence them were analyzed.The results show that the energy consumption ratio increases rapidly with increasing total organic carbon(TOC)content.For oil-prone shales,the TOC content corresponding to an energy consumption ratio of 3 is approximately 4.2%.This indicates that shale with a high TOC content can be expected to reduce the project cost through large-scale operation,making the energy consumption ratio after consideration of the project cost greater than 1.In situ heating and upgrading technology can achieve economic benefits.The main methods for improving the economic feasibility by analyzing factors that influence the energy consumption ratio include the following:(1)exploring technologies that efficiently heat shale but reduce the heat dissipation of surrounding rocks,(2)exploring technologies for efficient transformation of organic matter into oil and gas,i.e.,exploring technologies with catalytic effects,or the capability to reduce in situ heating time,and(3)establishing a horizontal well deployment technology that comprehensively considers the energy consumption ratio,time cost,and engineering cost.
基金supported by the National Basic Research Program of China (No. 2013CB835004)NSFC programs (Nos. 41102018, 41230102)
文摘Cryogenian Datangpo Formation was deposited during the interglacial time between the Sturtian and Marinoan ice ages. We studied nitrogen isotope compositions and contents of Mo of the black shales from the basal Datangpo Formation in northeastern Guizhou, South China, for an attempt to reconstruct the marine redox change and nitrogen cycle during the interglacial time. Based on lithostratigraphy as well as geochemical profiles, the basal black shales can be divided into four intervals: Interval 1 has the lowest δ^(15)N value(+5.0‰); in interval 2, δ^(15)N values vary between +6.4‰ and +7.4‰(the first peak); interval 3 records stable values of δ^(15)N around +6‰; and interval 4 is characterized by its higher δ^(15)N values, between +6.7‰ and +7.8‰(the second peak). The values of enrichment factor of Mo decrease from 56.8 to 2.6 with the ascending stratigraphic trend. It indicated that immediately after the Sturtian glaciations, the marine seawater above the transitional zone between the shelf to slope of the southern margin of the Yangtze Platform was stratified, with shallow seawater being oxic but deep water being sulfidic. Subsequently, high denitrification rates prevailed in expanded suboxic areas in spite of a short emergence of an oxic condition in the surface seawater, and the deep seawaters were still anoxic or even euxinic.