期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical Analysis of the Structure of High-Strength Double-Layer Steel Plate Concrete Shaft by Drilling Method of Water-Bearing Weak Rock Formation
1
作者 Touogam Touolak Benedicte 《Open Journal of Civil Engineering》 2022年第2期189-207,共19页
In order to ensure the safety of coal mine shaft construction, a double-layer steel plate concrete composite shaft wall structure was proposed. However, fewer studies were conducted on this structure, which made engin... In order to ensure the safety of coal mine shaft construction, a double-layer steel plate concrete composite shaft wall structure was proposed. However, fewer studies were conducted on this structure, which made engineers too confused to fully recognize its feasibility of this structure. Hence, based on the previous experimental research on the Taohutu mine construction project in  Ordos in Inner Mongolia, this research paper aims to provide a widely deep numerical analysis by the usage of the finite element software, in fact, to establish the corresponding numerical analysis model and make a comparison with the experimental data to get the rationality of the verified model. The influence of the composite characteristics of the steel plate and concrete on the ultimate bearing capacity and stress field of the shaft wall structure is studied here through the method of multi-factor analysis. Also, the optimal design scheme of the double-layer steel plate and concrete composite shaft wall structure is proposed in this research paper. 展开更多
关键词 Finite Element Method Double-Layer Steel Plate shaft Wall structure Taohutu Mine Construction
在线阅读 下载PDF
A study on the characterization of smoke movement in shafts with different fire source positions
2
作者 Zhu Jie Yang Tianyou +1 位作者 Wu Jianbo Du Lulu 《Engineering Sciences》 EI 2013年第6期72-79,共8页
In this study,experimental and numerical simulation methods were combined to simulate the changing course of the temperature and velocity fields in nine different fire scenes. The characteristics of smoke movement in ... In this study,experimental and numerical simulation methods were combined to simulate the changing course of the temperature and velocity fields in nine different fire scenes. The characteristics of smoke movement in shafts with different fire source position factors(h/H) were quantitatively investigated,and the non-dimensional fitting function between the fire source position factors and the maximum temperature was deduced. The results showed that the location of the neutral plane moved upward as the fire source rose,and all the generated smoke spread to the upper areas;however,there was barely any smoke in the lower areas. The maximum temperature was inversely proportional to the fire source position factor;the higher the source position is,i.e. the higher the ratio factor is,the lower the maximum temperature is in the shaft. The experimental verification of the fire dynamics simulator(FDS) showed good results. 展开更多
关键词 different fire source position shaft structure smoke movement FDS field simulation TEMPERATURE fitting function
在线阅读 下载PDF
Rapid excavation with a newly developed retaining system: Spiral assembly steel structure
3
作者 关成立 杨宇友 王成彪 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2719-2729,共11页
The spiral assembly steel structure, a newly developed retaining wall for the rapid excavation of small-sized foundation pits in unsaturated soil, is presented. This new type of retaining structure is prefabricated in... The spiral assembly steel structure, a newly developed retaining wall for the rapid excavation of small-sized foundation pits in unsaturated soil, is presented. This new type of retaining structure is prefabricated in the factory and is assembled on site in the excavation of a pit. This retaining structure is composed of several prefabricated steel structural units, in which the adjacent steel structural units are joined with connectors. Each steel structural unit has one steel pipe in the radial direction and is welded to a single piece of steel plate. After full installation in situ, the retaining structure becomes a cylindrical steel structure. With the protection afforded by this new type of retaining structure, excavation work can be completed within 24 h to a depth up to 5 m. In order to verify the reliability and effectiveness of this new retaining structure, field construction tests were conducted in Beijing, China. The test construction was monitored. The monitoring program included measuring stress in the structure, lateral earth pressure, and lateral deformation of the surrounding soil. The monitoring data from the field test were compared with the theoretical results. The results show that the proposed new structure is reliable and effective. 展开更多
关键词 working shaft rapid excavation retaining structure field construction monitoring
在线阅读 下载PDF
Stability analysis and grouting treatment of inclined shaft lining structure in water-rich strata: A case study 被引量:3
4
作者 Zhaopeng Ren Cun Zhang +2 位作者 Yongle Wang Shiyong Lan Shiqi Liu 《Geohazard Mechanics》 2023年第4期308-318,共11页
The stability of inclined shaft lining structure (ISLS) in complex water-rich strata is affected by many factors, suchas water pressure, joint, soft rock, lining corrosion and so on. The instability of the ISLS will a... The stability of inclined shaft lining structure (ISLS) in complex water-rich strata is affected by many factors, suchas water pressure, joint, soft rock, lining corrosion and so on. The instability of the ISLS will affect the safe andefficient coal mine production. Bathe sed on the geological conditions of the Xiaobaodang coal mine, this papertested the evolution characteristics of concrete composition in long-term water seepage areas and revealed theinfluence mechanism of corrosion weakening of shaft lining (SL) in water-rich strata. Meanwhile, transientelectromagnetic, ground penetrating radar, and infrared monitoring are used to detect the water-rich zones, anddamage zones of surrounding rock and lining water seepage zones, and a three-level safety evaluation model forthe instability risk of ISLS is constructed. Water abundance of the surrounding rock, surrounding rock deterioration, and shaft lining seepage were the specific indicators in the model. The main inclined shaft (MIS) in thestudied coal mine is divided into three levels: non instability risk zone, potential instability risk zone, and highinstability risk zone. According to the evaluation results, comprehensive prevention and control measures of“hydrophobic hole drainage” and “back-lining grouting” are adopted for the water inrush source and the surrounding rock micro-crack water channel. The precise prevention and control of ISLS is realized. The researchresults also provide a reference for the stability evaluation of ISLS and the accurate prevention and control undersimilar conditions. 展开更多
关键词 Inclined shaft lining structure Stability evaluation Water-rich strata Field measurement GROUTING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部