期刊文献+
共找到561,168篇文章
< 1 2 250 >
每页显示 20 50 100
基于SfM与Instant-NGP的田间大豆植株三维重建方法 被引量:1
1
作者 曹鑫 秦绪佳 徐晓刚 《农业工程学报》 北大核心 2025年第1期171-180,共10页
针对以往田间环境下大豆植株三维重建过程中存在的数据采集设备成本较高、重建阶段耗时较长等问题,该研究提出一种基于运动检测自适应抽帧、运动恢复结构(structure from motion,SfM)与即时神经图形原语(instant neural graphics primit... 针对以往田间环境下大豆植株三维重建过程中存在的数据采集设备成本较高、重建阶段耗时较长等问题,该研究提出一种基于运动检测自适应抽帧、运动恢复结构(structure from motion,SfM)与即时神经图形原语(instant neural graphics primitives,Instant-NGP)的田间大豆植株三维重建方法SfM-INGP。该方法旨在提供一套低成本、高效率且高质量的田间大豆植株三维重建方案。首先,在田间环境下利用消费级智能手机环绕拍摄大豆植株全景视频,并基于运动检测的自适应速率抽帧方式获取大豆植株多视角图像序列,以减少冗余数据并提升计算效率;其次,利用SfM算法从多视角图像中恢复相机位姿,生成稀疏点云,为后续重建提供位姿信息;最后,通过Instant-NGP算法对含有位姿信息的大豆植株图像进行多分辨率哈希编码,将其输入小型多层感知机进行训练,以完成高效的三维重建。试验结果表明,在重建效率方面,与多视图立体视觉(motion-multi view stereo,MVS)和神经辐射场(neural radiance fields,NeRF)方法相比,SfM-INGP的平均重建时间为2.82 min,分别大幅缩短90.7%和99.4%;在重建质量方面,SfM-INGP的平均峰值信噪比为24.47 dB,较MVS和NeRF分别有效提高15.4%和9.3%;在重建精度方面,SfM-INGP的均方误差为0.15,显著低于MVS的0.46和NeRF的0.37;在计算资源消耗方面,SfM-INGP的平均显存消耗为6.57 GB,虽略高于MVS的5.73 GB,但远低于NeRF的14.81 GB,展现了SfM-INGP方法在重建效率、质量、精度与计算资源消耗之间的良好平衡。该研究提出的方法在实际农业田间环境下通过低成本的数据采集设备,实现了高效率且高质量的田间大豆植株三维重建,为大豆信息化育种平台建设提供了重要的技术支持和数据基础,在其他田间作物的三维重建中具有广泛应用潜力,为未来大规模农业信息化建设提供可行性方案。 展开更多
关键词 图像处理 三维重建 大豆 Instant-NGP sfm 神经辐射场
在线阅读 下载PDF
基于SFM+光学校正的小麦根系三维重建与表型提取方法
2
作者 段凌凤 王新轶 +2 位作者 魏函志 王旭升 杨万能 《农业机械学报》 北大核心 2025年第3期18-26,共9页
小麦根系作为关键的水分和养分吸收器官,其表型特征对了解小麦生长状况及土壤环境具有重要意义。然而,根系地下生长的特性使得其观测面临挑战。本研究设计了一套小麦水生培养装置、基于虹吸原理的柔性换液装置及根系图像采集系统,并针... 小麦根系作为关键的水分和养分吸收器官,其表型特征对了解小麦生长状况及土壤环境具有重要意义。然而,根系地下生长的特性使得其观测面临挑战。本研究设计了一套小麦水生培养装置、基于虹吸原理的柔性换液装置及根系图像采集系统,并针对该系统开发了图像光学折射校正方法,通过SFM算法构建了根系的三维点云模型,并提取了相关表型特征。试验表明,柔性换液装置使换液前后根系图像结构相似度提高至0.98;折射校正方法使图像误差减少62%。采用提出的装置及方法对小麦根系生长发育受氮环境的影响进行了探讨。研究结果表明,在低氮条件下,小麦根系展现出更深、分布更密集的生长趋势。另外,相比于氮高效品种,氮低效品种对氮环境变化更敏感。本文提出的装置及方法有助于高通量植物根系三维表型分析。 展开更多
关键词 小麦根系 三维重建 折射校正 图像处理 表型提取 sfm
在线阅读 下载PDF
基于SfM-MVS的河工模型三维重建精度优化研究
3
作者 刘世涛 毋新房 +3 位作者 涂从刚 于三甲 黄桂平 张佳辉 《泥沙研究》 北大核心 2025年第4期37-44,共8页
快速准确地测量河道地形及河床冲淤变化,对研究河流状态具有重大意义。针对SfM-MVS在河工模型试验中缺乏应用性指导、精度不稳定等问题,通过实验验证SfM-MVS可以获取比TLS更高分辨率、可视化效果更好、测量精度相当的三维模型。从图像... 快速准确地测量河道地形及河床冲淤变化,对研究河流状态具有重大意义。针对SfM-MVS在河工模型试验中缺乏应用性指导、精度不稳定等问题,通过实验验证SfM-MVS可以获取比TLS更高分辨率、可视化效果更好、测量精度相当的三维模型。从图像质量与图像预处理、镜头畸变与相机标定方法、测量网形设计与优化三方面对SfM-MVS在河工模型三维重建中的精度优化开展了实验研究,经优化后SfMMVS三维模型的测量精度显著提升。从前期准备、图像采集、图像处理与精度评定等方面,为SfM-MVS在河工模型试验中应用提供一般性指导。 展开更多
关键词 sfm-MVS 河工模型试验 地形测量 三维模型重建 精度优化
原文传递
Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al_(2)O_(3)–SiO_(2)slag melts 被引量:1
4
作者 Yong Hou Shuo Zhang +3 位作者 Jie Dang Jia Guo Hanghang Zhou Xuewei Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期70-79,共10页
Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on... Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO. 展开更多
关键词 ALUMINOSILICATE VISCOSITY structure spectroscopy
在线阅读 下载PDF
基于SfM-MVS的作物覆盖坡面微地形特征提取与分析
5
作者 姜静海 郑子成 何淑勤 《水土保持学报》 北大核心 2025年第3期325-334,共10页
[目的]为探究作物覆盖坡面地表微地形特征提取的可能性,实现作物覆盖条件下微地形三维建模与动态监测。[方法]采用SfM-MVS(structure from motion with multi-view stereo)方法,以玉米覆盖坡面为研究对象,裸坡作为对照,开展以裸坡及模... [目的]为探究作物覆盖坡面地表微地形特征提取的可能性,实现作物覆盖条件下微地形三维建模与动态监测。[方法]采用SfM-MVS(structure from motion with multi-view stereo)方法,以玉米覆盖坡面为研究对象,裸坡作为对照,开展以裸坡及模拟微地形的标志物为基准,玉米覆盖条件下地表微地形构建提取和精度评估研究。[结果]1)玉米覆盖坡面控制点误差<0.002 m,稀疏点云与密集点云数量分别为裸坡的2.1、2.6倍。2)基于C2C(Cloud to Cloud)的结果表明,玉米覆盖坡面与裸坡点云85.12%距离<0.001 m;DOD(DEM of Difference)的结果表明,玉米覆盖坡面与裸坡DEM有96.07%高差绝对值<0.003 m,整体精度可达毫米级。3)裸坡标志物微地形提取更接近实际值,各方向标志物长、宽、深精度均在98%以上;玉米覆盖坡面标志物虽因植被叠加导致横向标志物精度有所下降,但精度仍在97%以上。[结论]基于SfM-MVS的测量法,可应用于玉米覆盖坡面微地形起伏特征的提取。 展开更多
关键词 sfm-MVS摄影测量法 微地形 玉米覆盖 坡面尺度
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
6
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Copper complexes of anthrahydrazone bearing pyridyl side chain:Synthesis,crystal structure,anticancer activity,and DNA binding 被引量:1
7
作者 HUANG Yao WU Yingshu +5 位作者 BAO Zhichun HUANG Yue TANG Shangfeng LIU Ruixue LIU Yancheng LIANG Hong 《无机化学学报》 北大核心 2025年第1期213-224,共12页
To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bisp... To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2. 展开更多
关键词 anthrahydrazone metal complex crystal structure anticancer activity cell apoptosis
在线阅读 下载PDF
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:4
8
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
Characterization and Analysis of Abnormal Grain Structures in WSTi6421 Titanium Alloy AfterβAnnealing Treatment 被引量:1
9
作者 Wang Wensheng Liu Xianghong +5 位作者 Wang Haipeng Wang Kaixuan Tian Yanwen Yan Jianchuan Li Yulu Chen Haisheng 《稀有金属材料与工程》 北大核心 2025年第2期354-362,共9页
As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven si... As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven size distribution.Through electron backscattered diffraction(EBSD),the forged microstructure at various locations of as-forged WSTi6421 titanium alloy billet was analyzed,revealing that the strength of theβphase cubic texture generated by forging significantly influences the grain size afterβannealing.Heat treatment experiments were conducted within the temperature range from T_(β)−50°C to T_(β)+10°C to observe the macro-and micro-morphologies.Results show that the cubic texture ofβphase caused by forging impacts the texture of the secondaryαphase,which subsequently influences theβphase formed during the post-βannealing process.Moreover,the pinning effect of the residual primaryαphase plays a crucial role in the growth ofβgrains during theβannealing process.EBSD analysis results suggest that the strength ofβphase with cubic texture formed during forging process impacts the orientation distribution differences ofβgrains afterβannealing.Additionally,the development of grains with large orientations within the cubic texture shows a certain degree of selectivity duringβannealing,which is affected by various factors,including the pinning effect of the primaryαphase,the strength of the matrix cubic texture,and the orientation relationship betweenβgrain and matrix.Comprehensively,the stronger the texture in a certain region,the less likely the large misoriented grains suffering secondary growth,thereby aggregating the difference in microstructure and grain orientation distribution across different regions afterβannealing. 展开更多
关键词 WSTi6421 titanium alloy βannealing abnormal grain structure
原文传递
3D Distinct Element Back Analysis Based on Rock Structure Modelling of SfM Point Clouds:The Case of the 2019 Pinglu Rockfall of Kaili,China
10
作者 Zhen Ye Qiang Xu +2 位作者 Qian Liu Xiujun Dong Feng Pu 《Journal of Earth Science》 SCIE CAS CSCD 2024年第5期1568-1582,共15页
This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure,based on a case study of the 2019 Pinglu rockfall.The basic processing proc... This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure,based on a case study of the 2019 Pinglu rockfall.The basic processing procedure involves:(1)computing the point normal for HSV-rendering of point cloud;(2)automatically clustering the discontinuity sets;(3)extracting the set-based point clouds;(4)estimating of set-based mean orientation,spacing,and persistence;(5)identifying the block-forming arrays of discontinuity sets for the assessment of stability.The effectiveness of our rock structure processing has been proved by 3D distinct element back analysis.The results show that Sf M modelling and rock structure computing provides enormous cost,time and safety incentives in standard engineering practice. 展开更多
关键词 unmanned aerial vehicle(UAV) 3D point cloud rock structure KARST discontinuity sets engineeringgeology
原文传递
SCS-Net:A DNN-based electromagnetic shielding effectiveness analysis method for slotted composite structures 被引量:1
11
作者 Wanli DU Guangzhi CHEN +4 位作者 Ziang ZHANG Xinsong WANG Shunchuan YANG Xingye CHEN Donglin SU 《Chinese Journal of Aeronautics》 2025年第3期505-520,共16页
As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai... As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed. 展开更多
关键词 Deep neural networkcs Measurement-computation fusion Electromagnetic shielding effectiveness Slotted composite structures Structural paranmeters
原文传递
In situ constructing lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x) as bifunctional electrocatalyst for high-current-density water splitting 被引量:1
12
作者 Yue Deng Jin Wang +6 位作者 Shao-Fei Zhang Zhi-Jia Zhang Jin-Feng Sun Tian-Tian Li Jian-Li Kang Hao Liu Shi Bai 《Rare Metals》 2025年第2期1053-1066,共14页
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-... The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting. 展开更多
关键词 Lamellar nanoporous structure Electronic structure regulation High current density Theoretical calculation Overall water splitting
原文传递
Multi-interface structure design of bamboo-based carbon/Co/CoO composite electromagnetic wave absorber based on biomimetic honeycomb-shaped superstructure 被引量:2
13
作者 Yanting Wang He Han +2 位作者 Huiyang Bian Yanjun Li Zhichao Lou 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期631-644,共14页
The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through ... The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through nanostructure design and interface modifica-tion has proven to be an effective strategy to obtain efficient electromagnetic wave absorption.Here,this work implements an innovative method that combines biomimetic honeycomb superstructure to constrain hierarchical porous heterostructure composed of Co/CoO nano-particles to improve the interfacial polarization intensity.The method effectively controlled the absorption efficiency of Co^(2+)through de-lignification modification of bamboo,and combined with the bionic carbon-based natural hierarchical porous structure to achieve uniform dispersion of nanoparticles,which is conducive to the in-depth construction of heterogeneous interfaces.In addition,the multiphase struc-ture brought about by high-temperature pyrolysis provides the best dielectric loss and impedance matching for the material.Therefore,the obtained bamboo-based Co/CoO multiphase composite showed excellent electromagnetic wave absorption performance,achieving excel-lent reflection loss(RL)of-79 dB and effective absorption band width of 4.12 GHz(6.84-10.96 GHz)at low load of 15wt%.Among them,the material’s optimal radar cross-section(RCS)reduction value can reach 31.9 dB·m^(2).This work provides a new approach to the micro-control and comprehensive optimization of macro-design of microwave absorbers,and offers new ideas for the high-value utiliza-tion of biomass materials. 展开更多
关键词 biomass honeycomb porous heterojunction structure interfacial polarization electromagnetic wave absorption
在线阅读 下载PDF
Janus structure design of polyimide composite foam for absorption-dominated EMI shielding and thermal insulation 被引量:2
14
作者 Ruixing Hao Yaqi Yang +3 位作者 Peiyou He Yaqing Liu Guizhe Zhao Hongji Duan 《Journal of Materials Science & Technology》 2025年第3期317-326,共10页
In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electrom... In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft. 展开更多
关键词 Electromagnetic interference shielding(EMI) Thermal insulation POLYIMIDE Janus structure Low reflection
原文传递
基于SfM和独立模型法的航空倾斜摄影空三加密
15
作者 邹崇尧 戴腾 +2 位作者 邹松柏 刘玉轩 尧志青 《地理空间信息》 2025年第10期84-89,132,共7页
针对航空(低空)摄影和倾斜摄影空三效率低的不足,融合解析摄影测量、粗差探测与可靠性及计算机视觉相关理论,提出了一种稳健、高效的自动空三加密方法。首先,从各视影像中选取小块区域,利用增量式SfM估计出相机检校参数初值;其次,利用... 针对航空(低空)摄影和倾斜摄影空三效率低的不足,融合解析摄影测量、粗差探测与可靠性及计算机视觉相关理论,提出了一种稳健、高效的自动空三加密方法。首先,从各视影像中选取小块区域,利用增量式SfM估计出相机检校参数初值;其次,利用平高分求的独立模型法区域网平差计算下视影像的外方位元素和加密点地面坐标初值,经光束法优化后获得下视高精度的加密成果;然后,视下视加密成果为控制信息,估计倾斜影像的外方位元素初值。最后,多视影像联合而整个光束法平差优化,获得测区完整的加密成果。利用典型数据进行实验,结果表明,所提方法满足相应比例尺精度指标的同时,与主流商业化软件大疆DJI Terra相比,可以提高近5倍的处理效率。 展开更多
关键词 空三 倾斜影像 增量式sfm 独立模型法
在线阅读 下载PDF
Dynamic Structural Colors in Helical Superstructures:from Supramolecules to Polymers 被引量:1
16
作者 Bo Ji Lang Qin Yan-Lei Yu 《Chinese Journal of Polymer Science》 2025年第3期406-428,共23页
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.... Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact. 展开更多
关键词 Structural colors Cholesteric liquid crystals Elastomers Polymer network
原文传递
Customizing solid electrolyte interphase with bilayer spatial structure to mitigate swelling towards long-term life lithium battery 被引量:1
17
作者 Dongni Zhao Hongcheng Liang +6 位作者 Shumin Wu Yin Quan Xinyi Hu Jingni Li Peng Wang Xiaoling Cui Shiyou Li 《Journal of Energy Chemistry》 2025年第6期702-712,I0015,共12页
The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the ra... The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the rapid battery performance degradation.Here,we customize two SEIs with different spatial structures(bilayer and mosaic)by simply regulating the proportion of additive fluoroethylene carbonate.Surprisingly,due to the uniform distribution of dense inorganic nano-crystals in the inner,the bilayer SEI exhibits low-swelling and excellent mechanical properties,so the undesirable side reactions of the electrolyte are effectively suppressed.In addition,we put forward the growth rate of swelling ratio(GSR)as a key indicator to reveal the swelling change in SEI.The GSR of bilayer SEI merely increases from1.73 to 3.16 after the 300th cycle,which enables the corresponding graphite‖Li battery to achieve longer cycle stability.The capacity retention is improved by 47.5% after 300 cycles at 0.5 C.The correlation among SEI spatial structure,swelling behavior,and battery performance provides a new direction for electrolyte optimization and interphase structure design of high energy density batteries. 展开更多
关键词 Lithium battery SEI film Spatial structure Swelling behavior Cycle-stable
在线阅读 下载PDF
Deciphering environmental factors influencing phytoplankton community structure in a polluted urban river 被引量:2
18
作者 Xiaxia Li Kai Chen +7 位作者 Chao Wang Tianyu Zhuo Hongtao Li Yong Wu Xiaohui Lei Ming Li Bin Chen Beibei Chai 《Journal of Environmental Sciences》 2025年第2期375-386,共12页
Tuojiang River Basin is a first-class tributary of the upper reaches of the Yangtze River—which is the longest river in China.As phytoplankton are sensitive indicators of trophic changes inwater bodies,characterizing... Tuojiang River Basin is a first-class tributary of the upper reaches of the Yangtze River—which is the longest river in China.As phytoplankton are sensitive indicators of trophic changes inwater bodies,characterizing phytoplankton communities and their growth influencing factors in polluted urban rivers can provide new ideas for pollution control.Here,we used direct microscopic count and environmental DNA(eDNA)metabarcoding methods to investigate phytoplankton community structure in Tuojiang River Basin(Chengdu,Sichuan Province,China).The association between phytoplankton community structure and water environmental factors was evaluated by Mantel analysis.Additional environmental monitoring data were used to pinpoint major factors that influenced phytoplankton growth based on structural equation modeling.At the phylum level,the dominant phytoplankton taxa identified by the conventional microscopic method mainly belonged to Bacillariophyta,Chlorophyta,and Cyanophyta,in contrast with Chlorophyta,Dinophyceae,and Bacillariophyta identified by eDNA metabarcoding.Inα-diversity analysis,eDNA metabarcoding detected greater species diversity and achieved higher precision than the microscopic method.Phytoplankton growth was largely limited by phosphorus based on the nitrogen-to-phosphorus ratios>16:1 in all water samples.Redundancy analysis and structural equation modeling also confirmed that the nitrogen-to-phosphorus ratio was the principal factor influencing phytoplankton growth.The results could be useful for implementing comprehensive management of the river basin environment.It is recommended to control the discharge of point-and surface-source pollutants and the concentration of dissolved oxygen in areas with excessive nutrients(e.g.,Jianyang-Ziyang).Algae monitoring techniques and removal strategies should be improved in 201 Hospital,Hongrihe Bridge and Colmar Town areas. 展开更多
关键词 Environmental DNA Microscopic count Phytoplankton growth Structural equation modeling Tuojiang River Basin
原文传递
High-burn-up structure evolution in polycrystalline UO_(2):Phase-field modeling investigation 被引量:1
19
作者 Dan Sun Yanbo Jiang +4 位作者 Chuanbao Tang Yong Xin Zhipeng Sun Wenbo Liu Yuanming Li 《Chinese Physics B》 2025年第2期378-386,共9页
Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety.In this study,a phase-field model is p... Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety.In this study,a phase-field model is proposed to examine the evolution of high-burn-up structures in polycrystalline UO_(2).The formation and growth of recrystallized grains were initially investigated.It was demonstrated that recrystallization kinetics adhere to the Kolmogorov–Johnson–Mehl–Avrami(KJMA)equation,and that recrystallization represents a process of free-energy reduction.Subsequently,the microstructural evolution in UO_(2) was analyzed as the burn up increased.Gas bubbles acted as additional nucleation sites,thereby augmenting the recrystallization kinetics,whereas the presence of recrystallized grains accelerated bubble growth by increasing the number of grain boundaries.The observed variations in the recrystallization kinetics and porosity with burn-up closely align with experimental findings.Furthermore,the influence of grain size on microstructure evolution was investigated.Larger grain sizes were found to decrease porosity and the occurrence of high-burn-up structures. 展开更多
关键词 high-burn-up structure phase field uranium dioxide gas bubble RECRYSTALLIZATION
原文传递
Revealing Hetero-Deformation Induced(HDI)Hardening and Dislocation Activity in a Dual-Heterostructure Magnesium Matrix Composite 被引量:1
20
作者 Lingling Fan Ran Ni +7 位作者 Lingbao Ren Peng Xiao Ying Zeng Dongdi Yin Hajo Dieringa Yuanding Huang Gaofeng Quan Wei Feng 《Journal of Magnesium and Alloys》 2025年第2期902-921,共20页
Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity ca... Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity caused by heterogeneous structures in the magnesium matrix composite remains unclear.In this study,a dual-heterogeneous TiC/AZ61 composite exhibits significantly improved plastic elongation(PEL)by nearly one time compared to uniform FG composite,meanwhile maintaining a high strength(UTS:417 MPa).This is because more severe deformation inhomogeneity in heterogeneous structure leads to more geometrically necessary dislocations(GNDs)accumulation and stronger HDI stress,resulting in higher HDI hardening compared to FG and CG composites.During the early stage of plastic deformation,the pile-up types of GND in the FG zone and CG zone are significantly different.GNDs tend to form substructures in the FG zone instead of the CG zone.They only accumulate at grain boundaries of the CG region,thereby leading to obviously increased back stress in the CG region.In the late deformation stage,the elevated HDI stress activates the new〈c+a〉dislocations in the CG region,resulting in dislocation entanglements and even the formation of substructures,further driving the high hardening in the heterogeneous composite.However,For CG composite,〈c+a〉dislocations are not activated even under large plastic strains,and only〈a〉dislocations pile up at grain boundaries and twin boundaries.Our work provides an in-depth understanding of dislocation variation and HDI hardening in heterogeneous magnesium-based composites. 展开更多
关键词 Mg-matrix composite Heterogeneous structure HDI hardening GND density DISLOCATION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部