In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly prope...In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly properly efficient solutions of set-valued optimization problem.展开更多
In this paper, firstly, a new notion of generalized cone convex set-valued map is introduced in real normed spaces. Secondly, a property of the generalized cone convex set-valued map involving the contingent epideriva...In this paper, firstly, a new notion of generalized cone convex set-valued map is introduced in real normed spaces. Secondly, a property of the generalized cone convex set-valued map involving the contingent epiderivative is obtained. Finally, as the applications of this property, we use the contingent epiderivative to establish optimality conditions of the set-valued optimization problem with generalized cone convex set-valued maps in the sense of Henig proper efficiency. The results obtained in this paper generalize and improve some known results in the literature.展开更多
In this paper, we introduce the concept of second-order compound contingent epiderivative for set-valued maps and discuss its relationship to the second-order contingent epiderivative. Simultaneously, we also investig...In this paper, we introduce the concept of second-order compound contingent epiderivative for set-valued maps and discuss its relationship to the second-order contingent epiderivative. Simultaneously, we also investigate some special properties of the second-order compound contingent epiderivative. By virtue of the second-order compound contingent epiderivative, we establish some unified second-order sufficient and necessary optimality conditions for set-valued optimization problems. All results in this paper generalize the corresponding results in the literature.展开更多
This paper deals with approximate weak minimal solutions of set-valued optimization problems under vector and set optimality criteria.The relationships between various concepts of approximate weak minimal solutions ar...This paper deals with approximate weak minimal solutions of set-valued optimization problems under vector and set optimality criteria.The relationships between various concepts of approximate weak minimal solutions are investigated.Some topological properties and existence theorems of these solutions are given.It is shown that for set-valued optimization problems with upper(outer)cone-semicontinuous objective values or closed objective maps the approximate weak minimal and strictly approximate lower weak minimal solution sets are closed.By using the polar cone and two scalarization processes,some necessary and sufficient optimality conditions in the sense of vector and set criteria are provided.展开更多
The concept of a cone subarcwise connected set-valued map is introduced. Several examples are given to illustrate that the cone subarcwise connected set-valued map is a proper generalization of the cone arcwise connec...The concept of a cone subarcwise connected set-valued map is introduced. Several examples are given to illustrate that the cone subarcwise connected set-valued map is a proper generalization of the cone arcwise connected set-valued map, as well as the arcwise connected set is a proper generalization of the convex set,respectively. Then, by virtue of the generalized second-order contingent epiderivative, second-order necessary optimality conditions are established for a point pair to be a local global proper efficient element of set-valued optimization problems. When objective function is cone subarcwise connected, a second-order sufficient optimality condition is also obtained for a point pair to be a global proper efficient element of set-valued optimization problems.展开更多
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti...Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.展开更多
As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and soluti...As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and solution optimality.To tackle this issue,we propose a problem-structure-informed quantum approximate optimization algorithm(QAOA)framework that fully exploits the quantum advantage under extremely limited quantum resources.Specifically,we leverage the inherent topological structure of power systems to decompose large-scale UCP instances into smaller subproblems,which are solvable in parallel by limited number of qubits.This decomposition not only circumvents the current hardware limitations of quantum computing but also achieves higher performance as the graph structure of the power system becomes more sparse.Consequently,our approach can be extended to future power systems that are larger and more complex.展开更多
By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers...Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods.展开更多
The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperatio...The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperation theorem, Kuhn-Tucker's, Lagrange's and saddle points optimality conditions, the necessary conditions are obtained for the set-valued optimization problem to attain its super efficient solutions. Also, the sufficient conditions for Kuhn-Tucker's, Lagrange's and saddle points optimality conditions are derived.展开更多
The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz Joh...The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.展开更多
The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function...The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function were introduced, from which the properties of the corresponding contingent cone and the alpha-order contingent derivative were studied. Finally, the optimality Kuhn-Tucker condition and the Wolfe duality theorem for the alpha-order S-preinvex set-valued optimization were presented with the help of the alpha-order contingent derivative.展开更多
The definitions of cone-subconvexlike set-valued maps and generalized cone-subconvexlike set-valued maps in topological vector spaces are defined by using the relative interiors of ordering cone. The relationships bet...The definitions of cone-subconvexlike set-valued maps and generalized cone-subconvexlike set-valued maps in topological vector spaces are defined by using the relative interiors of ordering cone. The relationships between the two classes of set-valued maps are investigated, and some properties of them are shown. A Gordan type alternative theorem under the assumption of generalized cone-subconvexlikeness of set-valued maps is proved by applying convex separation theorems involving the relative interiors in infinite dimensional spaces. Finally a necessary optimality condition theorem is shown for a general kind of set-valued vector optimization in a sense of weak E-minimizer.展开更多
This paper deals with higher-order optimality conditions for Henig effcient solutions of set-valued optimization problems.By virtue of the higher-order tangent sets, necessary and suffcient conditions are obtained for...This paper deals with higher-order optimality conditions for Henig effcient solutions of set-valued optimization problems.By virtue of the higher-order tangent sets, necessary and suffcient conditions are obtained for Henig effcient solutions of set-valued optimization problems whose constraint condition is determined by a fixed set.展开更多
This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary an...This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.展开更多
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ...Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.展开更多
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo...Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.展开更多
Traveling salesman problem(TSP) is one of the typical NP-hard problems, and it has been used in many engineering applications. However, the previous swarm intelligence(SI) based algorithms for TSP cannot coordinate wi...Traveling salesman problem(TSP) is one of the typical NP-hard problems, and it has been used in many engineering applications. However, the previous swarm intelligence(SI) based algorithms for TSP cannot coordinate with the exploration and exploitation abilities and are easily trapped into local optimum. In order to deal with this situation, a new hybrid optimization algorithm based on wolf pack search and local search(WPS-LS)is proposed for TSP. The new method firstly simulates the predatory process of wolf pack from the broad field to a specific place so that it allows for a search through all possible solution spaces and prevents wolf individuals from getting trapped into local optimum. Then, local search operation is used in the algorithm to improve the speed of solving and the accuracy of solution. The test of benchmarks selected from TSPLIB shows that the results obtained by this algorithm are better and closer to the theoretical optimal values with better robustness than those obtained by other methods.展开更多
There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound o...There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.展开更多
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
文摘In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly properly efficient solutions of set-valued optimization problem.
基金supported by the National Nature Science Foundation of China(11431004,11471291)the General Project of Chongqing Frontier and Applied Foundation Research(cstc2015jcyj A00050)the Key Project of Chongqing Frontier and Applied Foundation Research(cstc2017jcyj BX0055,cstc2015jcyj BX0113)
文摘In this paper, firstly, a new notion of generalized cone convex set-valued map is introduced in real normed spaces. Secondly, a property of the generalized cone convex set-valued map involving the contingent epiderivative is obtained. Finally, as the applications of this property, we use the contingent epiderivative to establish optimality conditions of the set-valued optimization problem with generalized cone convex set-valued maps in the sense of Henig proper efficiency. The results obtained in this paper generalize and improve some known results in the literature.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11601437,11526165and 11571055the Scientific Research Fund of Sichuan Provincial Science and Technology Department under Grant No.2015JY0237the Fundamental Research Funds for the Central Universities under Grant No.JBK160129
文摘In this paper, we introduce the concept of second-order compound contingent epiderivative for set-valued maps and discuss its relationship to the second-order contingent epiderivative. Simultaneously, we also investigate some special properties of the second-order compound contingent epiderivative. By virtue of the second-order compound contingent epiderivative, we establish some unified second-order sufficient and necessary optimality conditions for set-valued optimization problems. All results in this paper generalize the corresponding results in the literature.
基金Institute for Research in Fundamental Sciences(No.96580048).
文摘This paper deals with approximate weak minimal solutions of set-valued optimization problems under vector and set optimality criteria.The relationships between various concepts of approximate weak minimal solutions are investigated.Some topological properties and existence theorems of these solutions are given.It is shown that for set-valued optimization problems with upper(outer)cone-semicontinuous objective values or closed objective maps the approximate weak minimal and strictly approximate lower weak minimal solution sets are closed.By using the polar cone and two scalarization processes,some necessary and sufficient optimality conditions in the sense of vector and set criteria are provided.
基金Supported by the National Natural Science Foundation of China Grant 11461044the Natural Science Foundation of Jiangxi Province(20151BAB201027)the Science and Technology Foundation of the Education Department of Jiangxi Province(GJJ12010)
文摘The concept of a cone subarcwise connected set-valued map is introduced. Several examples are given to illustrate that the cone subarcwise connected set-valued map is a proper generalization of the cone arcwise connected set-valued map, as well as the arcwise connected set is a proper generalization of the convex set,respectively. Then, by virtue of the generalized second-order contingent epiderivative, second-order necessary optimality conditions are established for a point pair to be a local global proper efficient element of set-valued optimization problems. When objective function is cone subarcwise connected, a second-order sufficient optimality condition is also obtained for a point pair to be a global proper efficient element of set-valued optimization problems.
基金The Australian Research Council(DP200101197,DP230101107).
文摘Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.
文摘As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and solution optimality.To tackle this issue,we propose a problem-structure-informed quantum approximate optimization algorithm(QAOA)framework that fully exploits the quantum advantage under extremely limited quantum resources.Specifically,we leverage the inherent topological structure of power systems to decompose large-scale UCP instances into smaller subproblems,which are solvable in parallel by limited number of qubits.This decomposition not only circumvents the current hardware limitations of quantum computing but also achieves higher performance as the graph structure of the power system becomes more sparse.Consequently,our approach can be extended to future power systems that are larger and more complex.
基金Supported by the National Natural Science Foundation of China (10571035)
文摘By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
文摘Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods.
基金Supported by the National Natural Science Foundation of China (10461007)the Science and Technology Foundation of the Education Department of Jiangxi Province (GJJ09069)
文摘The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperation theorem, Kuhn-Tucker's, Lagrange's and saddle points optimality conditions, the necessary conditions are obtained for the set-valued optimization problem to attain its super efficient solutions. Also, the sufficient conditions for Kuhn-Tucker's, Lagrange's and saddle points optimality conditions are derived.
基金the National Natural Science Foundation(69972036) and the Natural Science Foundation of Shanxi province(995L02)
文摘The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.
基金Project supported by the National Natural Science Foundation of China (No. 10371024) the Natural Science Foundation of Zhejiang Province (No.Y604003)
文摘The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function were introduced, from which the properties of the corresponding contingent cone and the alpha-order contingent derivative were studied. Finally, the optimality Kuhn-Tucker condition and the Wolfe duality theorem for the alpha-order S-preinvex set-valued optimization were presented with the help of the alpha-order contingent derivative.
文摘The definitions of cone-subconvexlike set-valued maps and generalized cone-subconvexlike set-valued maps in topological vector spaces are defined by using the relative interiors of ordering cone. The relationships between the two classes of set-valued maps are investigated, and some properties of them are shown. A Gordan type alternative theorem under the assumption of generalized cone-subconvexlikeness of set-valued maps is proved by applying convex separation theorems involving the relative interiors in infinite dimensional spaces. Finally a necessary optimality condition theorem is shown for a general kind of set-valued vector optimization in a sense of weak E-minimizer.
基金Supported by the National Natural Science Foundation of China(10871216) Supported by the Science and Technology Research Project of Chongqing Municipal Education Commission(KJ100419) Supported by the Natural Science Foundation Project of CQ CSTC(cstcjjA00019)
文摘This paper deals with higher-order optimality conditions for Henig effcient solutions of set-valued optimization problems.By virtue of the higher-order tangent sets, necessary and suffcient conditions are obtained for Henig effcient solutions of set-valued optimization problems whose constraint condition is determined by a fixed set.
文摘This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.
基金The National Natural Science Foundation of China(No.61074147)the Natural Science Foundation of Guangdong Province(No.S2011010005059)+2 种基金the Foundation of Enterprise-University-Research Institute Cooperation from Guangdong Province and Ministry of Education of China(No.2012B091000171,2011B090400460)the Science and Technology Program of Guangdong Province(No.2012B050600028)the Science and Technology Program of Huadu District,Guangzhou(No.HD14ZD001)
文摘Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.
基金supported by the National Natural Science Foundation of China(60573159)
文摘Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.
基金the National Natural Science Foundation of China(No.61502198)the Science&Technology Development Project of Jilin Province(Nos.20180101334JC and 20190302117GX)the"3th-Five Year" Science and Technology Research Project of Education Department of Jilin Province(No.JJKH20170574KJ)
文摘Traveling salesman problem(TSP) is one of the typical NP-hard problems, and it has been used in many engineering applications. However, the previous swarm intelligence(SI) based algorithms for TSP cannot coordinate with the exploration and exploitation abilities and are easily trapped into local optimum. In order to deal with this situation, a new hybrid optimization algorithm based on wolf pack search and local search(WPS-LS)is proposed for TSP. The new method firstly simulates the predatory process of wolf pack from the broad field to a specific place so that it allows for a search through all possible solution spaces and prevents wolf individuals from getting trapped into local optimum. Then, local search operation is used in the algorithm to improve the speed of solving and the accuracy of solution. The test of benchmarks selected from TSPLIB shows that the results obtained by this algorithm are better and closer to the theoretical optimal values with better robustness than those obtained by other methods.
基金sponsored by the Key Knowledge Innovation Program of the Chinese Academy of Sciences (Grant. No. KZCX2-YW-QN203)the National Basic Research Program of China(2007CB411800),the GYHY200906009 of China Meteorological Administration
文摘There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.