For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm u...For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.展开更多
Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into g...Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into genetic algorithm, we proposed a heuristic genetic algorithm. In the genetic algorithm, we constructed a new operator to maintaining the classification ability. The experiment shows that our algorithm is efficient and effective for minimal reduct, even for the special example that the simple heuristic algorithm can’t get the right result.展开更多
Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features ma...Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. The conventional supervised FS methods evaluate various feature subsets using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. In this paper, we propose a new unsupervised quick reduct (QR) algorithm using rough set theory. The quality of the reduced data is measured by the classification performance and it is evaluated using WEKA classifier tool. The method is compared with existing supervised methods and the result demonstrates the efficiency of the proposed algorithm.展开更多
To guarantee the optimal reduct set, a heuristic reduction algorithm is proposed, which considers the distinguishing information between the members of each pair decision classes. Firstly the pairwise positive region ...To guarantee the optimal reduct set, a heuristic reduction algorithm is proposed, which considers the distinguishing information between the members of each pair decision classes. Firstly the pairwise positive region is defined, based on which the pairwise significance measure is calculated between the members of each pair classes. Finally the weighted pairwise significance of attribute is used as the attribute reduction criterion, which indicates the necessity of attributes very well. By introducing the noise tolerance factor, the new algorithm can tolerate noise to some extent. Experimental results show the advantages of our novel heuristic reduction algorithm over the traditional attribute dependency based algorithm.展开更多
The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to ...The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer.展开更多
As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safe...As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safety.This paper analyzes a fault diagnosis approach by using rough set theory in which how to reduce decision table of data set is a main calculation intensive task.Aiming at this reduction problem,a heuristic reduction algorithm based on attribution length and frequency is proposed.At the same time,the corresponding value reduction method is proposed in order to fulfill the reduction and diagnosis rules extraction.Meanwhile,a Euclid matching method is introduced to solve confliction problems among the extracted rules when some information is lacking.Principal of the whole algorithm is clear and diagnostic rules distilled from the reduction are concise.Moreover,it needs less calculation towards specific discernibility matrix,and thus avoids the corresponding NP hard problem.The whole process is realized by MATLAB programming.A simulation example shows that the method has a fast calculation speed,and the extracted rules can reflect the characteristic of fault with a concise form.The rule database,formed by different reduction of decision table,can diagnose single fault and multi-faults efficiently,and give satisfied results even when the existed information is incomplete.The proposed method has good error-tolerate capability and the potential for on-line fault diagnosis.展开更多
基金Anhui Provincial University Research Project(Project Number:2023AH051659)Tongling University Talent Research Initiation Fund Project(Project Number:2022tlxyrc31)+1 种基金Tongling University School-Level Scientific Research Project(Project Number:2021tlxytwh05)Tongling University Horizontal Project(Project Number:2023tlxyxdz237)。
文摘For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.
文摘Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into genetic algorithm, we proposed a heuristic genetic algorithm. In the genetic algorithm, we constructed a new operator to maintaining the classification ability. The experiment shows that our algorithm is efficient and effective for minimal reduct, even for the special example that the simple heuristic algorithm can’t get the right result.
基金supported by the UGC, SERO, Hyderabad under FDP during XI plan periodthe UGC, New Delhi for financial assistance under major research project Grant No. F-34-105/2008
文摘Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. The conventional supervised FS methods evaluate various feature subsets using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. In this paper, we propose a new unsupervised quick reduct (QR) algorithm using rough set theory. The quality of the reduced data is measured by the classification performance and it is evaluated using WEKA classifier tool. The method is compared with existing supervised methods and the result demonstrates the efficiency of the proposed algorithm.
基金Sponsored by the Ministerial Level Advanced Research Foundation(11415133)
文摘To guarantee the optimal reduct set, a heuristic reduction algorithm is proposed, which considers the distinguishing information between the members of each pair decision classes. Firstly the pairwise positive region is defined, based on which the pairwise significance measure is calculated between the members of each pair classes. Finally the weighted pairwise significance of attribute is used as the attribute reduction criterion, which indicates the necessity of attributes very well. By introducing the noise tolerance factor, the new algorithm can tolerate noise to some extent. Experimental results show the advantages of our novel heuristic reduction algorithm over the traditional attribute dependency based algorithm.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51504085)the Natural Science Foundation for Returness of Heilongjiang Province of China(Grant No.LC2017026).
文摘The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer.
基金Project Supported by National Natural Science Foundation of China (50607023), Natural Science Femdation of CQ CSTC (2006BB2189)
文摘As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safety.This paper analyzes a fault diagnosis approach by using rough set theory in which how to reduce decision table of data set is a main calculation intensive task.Aiming at this reduction problem,a heuristic reduction algorithm based on attribution length and frequency is proposed.At the same time,the corresponding value reduction method is proposed in order to fulfill the reduction and diagnosis rules extraction.Meanwhile,a Euclid matching method is introduced to solve confliction problems among the extracted rules when some information is lacking.Principal of the whole algorithm is clear and diagnostic rules distilled from the reduction are concise.Moreover,it needs less calculation towards specific discernibility matrix,and thus avoids the corresponding NP hard problem.The whole process is realized by MATLAB programming.A simulation example shows that the method has a fast calculation speed,and the extracted rules can reflect the characteristic of fault with a concise form.The rule database,formed by different reduction of decision table,can diagnose single fault and multi-faults efficiently,and give satisfied results even when the existed information is incomplete.The proposed method has good error-tolerate capability and the potential for on-line fault diagnosis.