Session-based recommendation systems(SBR)are pivotal in suggesting items by analyzing anonymized sequences of user interactions.Traditional methods,while competent,often fall short in two critical areas:they fail to a...Session-based recommendation systems(SBR)are pivotal in suggesting items by analyzing anonymized sequences of user interactions.Traditional methods,while competent,often fall short in two critical areas:they fail to address potential inter-session item transitions,which are behavioral dependencies that extend beyond individual session boundaries,and they rely on monolithic item aggregation to construct session representations.This approach does not capture the multi-scale and heterogeneous nature of user intent,leading to a decrease in modeling accuracy.To overcome these limitations,a novel approach called HMGS has been introduced.This system incorporates dual graph architectures to enhance the recommendation process.A global transition graph captures latent cross-session item dependencies,while a heterogeneous intra-session graph encodesmulti-scale item embeddings through localized feature propagation.Additionally,amulti-tier graphmatchingmechanism aligns user preference signals across different granularities,significantly improving interest localization accuracy.Empirical validation on benchmark datasets(Tmall and Diginetica)confirms HMGS’s efficacy against state-of-the-art baselines.Quantitative analysis reveals performance gains of 20.54%and 12.63%in Precision@10 on Tmall and Diginetica,respectively.Consistent improvements are observed across auxiliary metrics,with MRR@10,Precision@20,and MRR@20 exhibiting enhancements between 4.00%and 21.36%,underscoring the framework’s robustness in multi-faceted recommendation scenarios.展开更多
Session-based Recommendation(SBR)aims to accurately recom-mend a list of items to users based on anonymous historical session sequences.Existing methods for SBR suffer from several limitations:SBR based on Graph Neura...Session-based Recommendation(SBR)aims to accurately recom-mend a list of items to users based on anonymous historical session sequences.Existing methods for SBR suffer from several limitations:SBR based on Graph Neural Network often has information loss when constructing session graphs;Inadequate consideration is given to influencing factors,such as item price,and users’dynamic interest evolution is not taken into account.A new session recommendation model called Price-aware Session-based Recommendation(PASBR)is proposed to address these limitations.PASBR constructs session graphs by information lossless approaches to fully encode the original session information,then introduces item price as a new factor and models users’price tolerance for various items to influence users’preferences.In addition,PASBR proposes a new method to encode user intent at the item category level and tries to capture the dynamic interest of users over time.Finally,PASBR fuses the multi-perspective features to generate the global representation of users and make a prediction.Specifically,the intent,the short-term and long-term interests,and the dynamic interests of a user are combined.Experiments on two real-world datasets show that PASBR can outperform representative baselines for SBR.展开更多
Session-based recommendation predicts the user’s next action by exploring the item dependencies in an anonymous session.Most of the existing methods are based on the assumption that each session has a single intentio...Session-based recommendation predicts the user’s next action by exploring the item dependencies in an anonymous session.Most of the existing methods are based on the assumption that each session has a single intention,items irrelevant to the single intention will be regarded as noises.However,in real-life scenarios,sessions often contain multiple intentions.This paper designs a multi-channel Intention-aware Recurrent Unit(TARU)network to further mining these noises.The multi-channel TARU explicitly group items into the different channels by filtering items irrelevant to the current intention with the intention control unit.Furthermore,we propose to use the attention mechanism to adaptively generate an effective representation of the session’s final preference for the recommendation.The experimental results on two real-world datasets denote that our method performs well in session recommendation tasks and achieves improvement against several baselines on the general metrics.展开更多
Session-based recommendation aims to predict user preferences based on anonymous behavior sequences.Recent research on session-based recommendation systems has mainly focused on utilizing attention mechanisms on seque...Session-based recommendation aims to predict user preferences based on anonymous behavior sequences.Recent research on session-based recommendation systems has mainly focused on utilizing attention mechanisms on sequential patterns,which has achieved significant results.However,most existing studies only consider individual items in a session and do not extract information from continuous items,which can easily lead to the loss of information on item transition relationships.Therefore,this paper proposes a session-based recommendation algorithm(SGT)based on Gated Recurrent Unit(GRU)and Transformer,which captures user interests by learning continuous items in the current session and utilizes all item transitions on sessions in a more refined way.By combining short-term sessions and long-term behavior,user dynamic preferences are captured.Extensive experiments were conducted on three session-based recommendation datasets,and compared to the baseline methods,both the recall rate Recall@20 and the mean reciprocal rank MRR@20 of the SGT algorithm were improved,demonstrating the effectiveness of the SGT method.展开更多
Session-based recommendation(SBR)and multibehavior recommendation(MBR)are both important problems and have attracted the attention of many researchers and practitioners.Different from SBR that solely uses one single t...Session-based recommendation(SBR)and multibehavior recommendation(MBR)are both important problems and have attracted the attention of many researchers and practitioners.Different from SBR that solely uses one single type of behavior sequences and MBR that neglects sequential dynamics,heterogeneous SBR(HSBR)that exploits different types of behavioral information(e.g.,examinations like clicks or browses,purchases,adds-to-carts and adds-to-favorites)in sequences is more consistent with real-world recommendation scenarios,but it is rarely studied.Early efforts towards HSBR focus on distinguishing different types of behaviors or exploiting homogeneous behavior transitions in a sequence with the same type of behaviors.However,all the existing solutions for HSBR do not exploit the rich heterogeneous behavior transitions in an explicit way and thus may fail to capture the semantic relations between different types of behaviors.However,all the existing solutions for HSBR do not model the rich heterogeneous behavior transitions in the form of graphs and thus may fail to capture the semantic relations between different types of behaviors.The limitation hinders the development of HSBR and results in unsatisfactory performance.As a response,we propose a novel behavior-aware graph neural network(BGNN)for HSBR.Our BGNN adopts a dual-channel learning strategy for differentiated modeling of two different types of behavior sequences in a session.Moreover,our BGNN integrates the information of both homogeneous behavior transitions and heterogeneous behavior transitions in a unified way.We then conduct extensive empirical studies on three real-world datasets,and find that our BGNN outperforms the best baseline by 21.87%,18.49%,and 37.16%on average correspondingly.A series of further experiments and visualization studies demonstrate the rationality and effectiveness of our BGNN.An exploratory study on extending our BGNN to handle more than two types of behaviors show that our BGNN can easily and effectively be extended to multibehavior scenarios.展开更多
Popularity plays a significant role in the recommendation system. Traditional popularity is only defined as a static ratio or metric (e.g., a ratio of users who have rated the item and the box office of a movie) regar...Popularity plays a significant role in the recommendation system. Traditional popularity is only defined as a static ratio or metric (e.g., a ratio of users who have rated the item and the box office of a movie) regardless of the previous trends of this ratio or metric and the attribute diversity of items. To solve this problem and reach accurate popularity, we creatively propose to extract the popularity of an item according to the Proportional Integral Differential (PID) idea. Specifically, Integral (I) integrates a physical quantity over a time window, which agrees with the fact that determining the attributes of items also requires a long-term observation. The Differential (D) emphasizes an incremental change of a physical quantity over time, which coincidentally caters to a trend. Moreover, in the Session-Based Recommendation (SBR) community, many methods extract session interests without considering the impact of popularity on interest, leading to suboptimal recommendation results. To further improve recommendation performance, we propose a novel strategy that leverages popularity to enhance the session interest (popularity-aware interest). The proposed popularity by PID is further used to construct the popularity-aware interest, which consistently improves the recommendation performance of the main models in the SBR community. For STAMP, SRGNN, GCSAN, and TAGNN, on Yoochoose1/64, the metric P@20 is relatively improved by 0.93%, 1.84%, 2.02%, and 2.53%, respectively, and MRR@20 is relatively improved by 3.74%, 1.23%, 2.72%, and 3.48%, respectively. On Movieslen-1m, the relative improvements of P@20 are 7.41%, 15.52%, 8.20%, and 20.12%, respectively, and that of MRR@20 are 2.34%, 12.41%, 20.34%, and 19.21%, respectively.展开更多
Session-based recommendation is a popular research topic that aims to predict users’next possible interactive item by exploiting anonymous sessions.The existing studies mainly focus on making predictions by consideri...Session-based recommendation is a popular research topic that aims to predict users’next possible interactive item by exploiting anonymous sessions.The existing studies mainly focus on making predictions by considering users’single interactive behavior.Some recent efforts have been made to exploit multiple interactive behaviors,but they generally ignore the influences of different interactive behaviors and the noise in interactive sequences.To address these problems,we propose a behavior-aware graph neural network for session-based recommendation.First,different interactive sequences are modeled as directed graphs.Thus,the item representations are learned via graph neural networks.Then,a sparse self-attention module is designed to remove the noise in behavior sequences.Finally,the representations of different behavior sequences are aggregated with the gating mechanism to obtain the session representations.Experimental results on two public datasets show that our proposed method outperforms all competitive baselines.The source code is available at the website of GitHub.展开更多
Session-based recommendation aims to predict the next item based on a user’s limited interactions within a short period.Existing approaches use mainly recurrent neural networks(RNNs)or graph neural networks(GNNs)to m...Session-based recommendation aims to predict the next item based on a user’s limited interactions within a short period.Existing approaches use mainly recurrent neural networks(RNNs)or graph neural networks(GNNs)to model the sequential patterns or the transition relationships between items.However,such models either ignore the over-smoothing issue of GNNs,or directly use cross-entropy loss with a softmax layer for model optimization,which easily results in the over-fitting problem.To tackle the above issues,we propose a self-supervised graph learning with target-adaptive masking(SGL-TM)method.Specifically,we first construct a global graph based on all involved sessions and subsequently capture the self-supervised signals from the global connections between items,which helps supervise the model in generating accurate representations of items in the ongoing session.After that,we calculate the main supervised loss by comparing the ground truth with the predicted scores of items adjusted by our designed target-adaptive masking module.Finally,we combine the main supervised component with the auxiliary self-supervision module to obtain the final loss for optimizing the model parameters.Extensive experimental results from two benchmark datasets,Gowalla and Diginetica,indicate that SGL-TM can outperform state-of-the-art baselines in terms of Recall@20 and MRR@20,especially in short sessions.展开更多
Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of...Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.展开更多
The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profile...The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term interests.However,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior sequences.Consequently,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their interests.This paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)framework.This study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention mechanism.Additionally,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user interests.Experimental results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance indicators.This advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns.展开更多
This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis...This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis based on 36 sets of generalized fuzzy numbers was performed, in which the degree of similarity of the fuzzy numbers was calculated with the proposed method and seven methods established by previous studies in the literature. The results of the analytical comparison show that the proposed similarity outperforms the existing methods by overcoming their drawbacks and yielding accurate outcomes in all calculations of similarity measures under consideration. Finally, in a numerical example that involves recommending cars to customers based on a nine-member linguistic term set, the proposed similarity measure proves to be competent in addressing fuzzy number recommendation problems.展开更多
Knowledge graphs(KGs)have garnered significant attention in recommender systems as auxiliary information.Most existing studies consider an item as an entity of a KG and utilize graph neural networks to learn item repr...Knowledge graphs(KGs)have garnered significant attention in recommender systems as auxiliary information.Most existing studies consider an item as an entity of a KG and utilize graph neural networks to learn item representations.However,two challenges exist regarding these algorithms:1)they provide recommended results but fail to explain the reason for which they are preferred by users;2)user vector representations are concentrated in a small area,thus resulting in similar mass recommendations.In this study,we focus on learning fine-grained user preferences(LFUP)via user-item interactions and using KGs that can capture the reason for which users interact with items.Additionally,a personalized recommendation task is achieved by optimizing the distribution of users in the vector space.User preferences are modeled by using historical interaction items pertaining to users and important relations within the KG.Subsequently,information from two views is aggregated to reduce the semantic differences between them.Finally,user preferences are personalized by maximizing the spatial distance between various user representations via contrastive learning.Experiments on public datasets prove that LFUP significantly benefits user-preference modeling and personalized recommendations.展开更多
Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency informatio...Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency information,which makes them ineffective in balancing users’long-and short-term preferences.At the same time,manymethods overlook the potential of frequency domainmethods,ignoring their efficiency in processing frequency information.To overcome this limitation,we shift the focus to the combination of time and frequency domains and propose a novel Hybrid Time-Frequency Dual-Branch Transformer for Sequential Recommendation,namely HyTiFRec.Specifically,we design two hybrid filter modules:the learnable hybrid filter(LHF)and the window hybrid filter(WHF).We combine these with the Efficient Attention(EA)module to form the dual-branch structure to replace the self-attention components in Transformers.The EAmodule is used to extract sequential and global information.The LHF andWHF modules balance the proportion of different frequency bands,with LHF globally modulating the spectrum in the frequency domain and WHF retaining frequency components within specific local frequency bands.Furthermore,we use a time domain residual information addition operation in the hybrid filter module,which reduces information loss and further facilitates the hybrid of time-frequency methods.Extensive experiments on five widely-used real-world datasets show that our proposed method surpasses state-of-the-art methods.展开更多
A survey conducted on the premature bolting of Huarong large leaf mustard from 2018 to 2024 revealed that Huarong large leaf mustard sown in middle August was associated with a higher propensity for premature bolting....A survey conducted on the premature bolting of Huarong large leaf mustard from 2018 to 2024 revealed that Huarong large leaf mustard sown in middle August was associated with a higher propensity for premature bolting. Furthermore, it was observed that the earlier being sown, the greater the rate of premature bolting when being sown prior to middle August. The rate of premature bolting observed in seedlings sown on August 8 was recorded at 35.6%. It was noted that as the age of the seedlings increased, the rate of premature bolting correspondingly increased. There were notable differences in the tolerance of various cultivars to elevated temperatures and prolonged sunlight exposure. For instance, cultivars such as Zhangjie 1 and Sichuan Shaguodi, which exhibit greater heat resistance, did not demonstrate premature bolting when sown in early August. The prolonged exposure to elevated temperatures, drought conditions, and extended periods of sunlight during the seedling stage of Huarong large leaf mustard, coupled with delayed irrigation and transplantation, contributed to the occurrence of premature bolting. The Huarong large leaf mustard, when been sown from late August to early September and transplanted at the appropriate time, exhibited normal growth and development, with no instances of premature bolting observed. It is advisable to select heat-resistant varieties, such as Zhangjie 1, prior to middle August. Huarong large leaf mustard should be sown in early to middle September. Additionally, it is essential to ensure centralized production and timely release of seeds, prompt transplantation and harvesting, and enhance the management of pests and diseases.展开更多
As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as...As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates.展开更多
This paper examines the impact of algorithmic recommendations and data-driven marketing on consumer engagement and business performance.By leveraging large volumes of user data,businesses can deliver personalized cont...This paper examines the impact of algorithmic recommendations and data-driven marketing on consumer engagement and business performance.By leveraging large volumes of user data,businesses can deliver personalized content that enhances user experiences and increases conversion rates.However,the growing reliance on these technologies introduces significant risks,including privacy violations,algorithmic bias,and ethical concerns.This paper explores these challenges and provides recommendations for businesses to mitigate associated risks while optimizing marketing strategies.It highlights the importance of transparency,fairness,and user control in ensuring responsible and effective data-driven marketing.展开更多
This special issue of the Asian Journal of Andrology is fully dedicated to the thematic area of non-obstructive azoospermia(NOA),one of the most complex and challenging conditions in the realm of andrology,urology,and...This special issue of the Asian Journal of Andrology is fully dedicated to the thematic area of non-obstructive azoospermia(NOA),one of the most complex and challenging conditions in the realm of andrology,urology,and reproductive medicine.展开更多
In the era of exponential growth of digital information,recommender algorithms are vital for helping users navigate vast data to find relevant items.Traditional approaches such as collaborative filtering and contentba...In the era of exponential growth of digital information,recommender algorithms are vital for helping users navigate vast data to find relevant items.Traditional approaches such as collaborative filtering and contentbasedmethods have limitations in capturing complex,multi-faceted relationships in large-scale,sparse datasets.Recent advances in Graph Neural Networks(GNNs)have significantly improved recommendation performance by modeling high-order connection patterns within user-item interaction networks.However,existing GNN-based models like LightGCN and NGCF focus primarily on single-type interactions and often overlook diverse semantic relationships,leading to reduced recommendation diversity and limited generalization.To address these challenges,this paper proposes a dual multi-relational graph neural network recommendation algorithm based on relational interactions.Our approach constructs two complementary graph structures:a User-Item Interaction Graph(UIIG),which explicitly models direct user behaviors such as clicks and purchases,and a Relational Association Graph(RAG),which uncovers latent associations based on user similarities and item attributes.The proposed Dual Multi-relational Graph Neural Network(DMGNN)features two parallel branches that perform multi-layer graph convolutional operations,followed by an adaptive fusion mechanism to effectively integrate information from both graphs.This design enhances the model’s capacity to capture diverse relationship types and complex relational patterns.Extensive experiments conducted on benchmark datasets—including MovieLens-1M,Amazon-Electronics,and Yelp—demonstrate thatDMGNN outperforms state-of-the-art baselines,achieving improvements of up to 12.3%in Precision,9.7%in Recall,and 11.5%in F1 score.Moreover,DMGNN significantly boosts recommendation diversity by 15.2%,balancing accuracy with exploration.These results highlight the effectiveness of leveraging hierarchical multi-relational information,offering a promising solution to the challenges of data sparsity and relation heterogeneity in recommendation systems.Our work advances the theoretical understanding of multi-relational graph modeling and presents practical insights for developing more personalized,diverse,and robust recommender systems.展开更多
Tag recommendation systems can significantly improve the accuracy of information retrieval by recommending relevant tag sets that align with user preferences and resource characteristics.However,metric learning method...Tag recommendation systems can significantly improve the accuracy of information retrieval by recommending relevant tag sets that align with user preferences and resource characteristics.However,metric learning methods often suffer from high sensitivity,leading to unstable recommendation results when facing adversarial samples generated through malicious user behavior.Adversarial training is considered to be an effective method for improving the robustness of tag recommendation systems and addressing adversarial samples.However,it still faces the challenge of overfitting.Although curriculum learning-based adversarial training somewhat mitigates this issue,challenges still exist,such as the lack of a quantitative standard for attack intensity and catastrophic forgetting.To address these challenges,we propose a Self-Paced Adversarial Metric Learning(SPAML)method.First,we employ a metric learning model to capture the deep distance relationships between normal samples.Then,we incorporate a self-paced adversarial training model,which dynamically adjusts the weights of adversarial samples,allowing the model to progressively learn from simpler to more complex adversarial samples.Finally,we jointly optimize the metric learning loss and self-paced adversarial training loss in an adversarial manner,enhancing the robustness and performance of tag recommendation tasks.Extensive experiments on the MovieLens and LastFm datasets demonstrate that SPAML achieves F1@3 and NDCG@3 scores of 22%and 32.7%on the MovieLens dataset,and 19.4%and 29%on the LastFm dataset,respectively,outperforming the most competitive baselines.Specifically,F1@3 improves by 4.7%and 6.8%,and NDCG@3 improves by 5.0%and 6.9%,respectively.展开更多
With the increasing complexity of hotel selection,traditional decision-making models often struggle to account for uncertainty and interrelated criteria.Multi-criteria decision-making(MCDM)techniques,particularly thos...With the increasing complexity of hotel selection,traditional decision-making models often struggle to account for uncertainty and interrelated criteria.Multi-criteria decision-making(MCDM)techniques,particularly those based on fuzzy logic,provide a robust framework for handling such challenges.This paper presents a novel approach to MCDM within the framework of Circular Intuitionistic Fuzzy Sets(C-IFS)by combining three distinct methodologies:Weighted Aggregated Sum Product Assessment(WASPAS),an Alternative Ranking Order Method Accounting for Two-Step Normalization(AROMAN),and the CRITIC method(Criteria Importance Through Inter-criteria Correlation).To address the dynamic nature of traveler preferences in hotel selection,the study employs a comprehensive set of criteria encompassing aspects such as location proximity,amenities,pricing,customer reviews,environmental impact,safety,booking flexibility,and cultural experiences.The CRITIC method is used to determine the importance of each criterion by assessing intercriteria correlations.AROMAN is employed for the systematic evaluation of alternatives,considering their additive relationships and providing a weighted assessment.WASPAS further analyzes the results obtained from AROMAN,incorporating both positive and negative aspects for a comprehensive evaluation.The integration of C-IFS enhances the model’s ability to manage uncertainty and imprecision in the decision-making process.Through a case study,we demonstrate the effectiveness of this integrated approach,offering decision-makers valuable insights for selecting the most suitable hotel option in alignment with the diverse preferences of contemporary travelers.This research contributes to the evolving field of decision science by showcasing the practical applicability of these methodologies within a C-IFS framework for complex decision scenarios.展开更多
基金funded by the State Grid Hebei Electric Power Company(Project Number:KJ2023-093).
文摘Session-based recommendation systems(SBR)are pivotal in suggesting items by analyzing anonymized sequences of user interactions.Traditional methods,while competent,often fall short in two critical areas:they fail to address potential inter-session item transitions,which are behavioral dependencies that extend beyond individual session boundaries,and they rely on monolithic item aggregation to construct session representations.This approach does not capture the multi-scale and heterogeneous nature of user intent,leading to a decrease in modeling accuracy.To overcome these limitations,a novel approach called HMGS has been introduced.This system incorporates dual graph architectures to enhance the recommendation process.A global transition graph captures latent cross-session item dependencies,while a heterogeneous intra-session graph encodesmulti-scale item embeddings through localized feature propagation.Additionally,amulti-tier graphmatchingmechanism aligns user preference signals across different granularities,significantly improving interest localization accuracy.Empirical validation on benchmark datasets(Tmall and Diginetica)confirms HMGS’s efficacy against state-of-the-art baselines.Quantitative analysis reveals performance gains of 20.54%and 12.63%in Precision@10 on Tmall and Diginetica,respectively.Consistent improvements are observed across auxiliary metrics,with MRR@10,Precision@20,and MRR@20 exhibiting enhancements between 4.00%and 21.36%,underscoring the framework’s robustness in multi-faceted recommendation scenarios.
文摘Session-based Recommendation(SBR)aims to accurately recom-mend a list of items to users based on anonymous historical session sequences.Existing methods for SBR suffer from several limitations:SBR based on Graph Neural Network often has information loss when constructing session graphs;Inadequate consideration is given to influencing factors,such as item price,and users’dynamic interest evolution is not taken into account.A new session recommendation model called Price-aware Session-based Recommendation(PASBR)is proposed to address these limitations.PASBR constructs session graphs by information lossless approaches to fully encode the original session information,then introduces item price as a new factor and models users’price tolerance for various items to influence users’preferences.In addition,PASBR proposes a new method to encode user intent at the item category level and tries to capture the dynamic interest of users over time.Finally,PASBR fuses the multi-perspective features to generate the global representation of users and make a prediction.Specifically,the intent,the short-term and long-term interests,and the dynamic interests of a user are combined.Experiments on two real-world datasets show that PASBR can outperform representative baselines for SBR.
基金This work is supported by Katie Shu Sui Pui Charitable Trust-Academic Publication Fellowship(Project Reference No.KSPF 2020-01)。
文摘Session-based recommendation predicts the user’s next action by exploring the item dependencies in an anonymous session.Most of the existing methods are based on the assumption that each session has a single intention,items irrelevant to the single intention will be regarded as noises.However,in real-life scenarios,sessions often contain multiple intentions.This paper designs a multi-channel Intention-aware Recurrent Unit(TARU)network to further mining these noises.The multi-channel TARU explicitly group items into the different channels by filtering items irrelevant to the current intention with the intention control unit.Furthermore,we propose to use the attention mechanism to adaptively generate an effective representation of the session’s final preference for the recommendation.The experimental results on two real-world datasets denote that our method performs well in session recommendation tasks and achieves improvement against several baselines on the general metrics.
基金supported by the Scientific Research Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi Higher Education Institutions,“Research on Deep Learning-based Recommendation Model and its Application”(Project No.2019KY0867)Guangxi Innovation-driven Development Special Project(Science and Technology Major Special Project)+2 种基金“Key Technology of Human-Machine Intelligent Interactive Touch Terminal Manufacturing and Industrial Cluster Application”(Project No.Guike AA21077018)“Touch display integrated intelligent touch system and industrial cluster application”(Project No.:Guike AA21077018-2)National Natural Science Foundation of China(Project No.:42065004).
文摘Session-based recommendation aims to predict user preferences based on anonymous behavior sequences.Recent research on session-based recommendation systems has mainly focused on utilizing attention mechanisms on sequential patterns,which has achieved significant results.However,most existing studies only consider individual items in a session and do not extract information from continuous items,which can easily lead to the loss of information on item transition relationships.Therefore,this paper proposes a session-based recommendation algorithm(SGT)based on Gated Recurrent Unit(GRU)and Transformer,which captures user interests by learning continuous items in the current session and utilizes all item transitions on sessions in a more refined way.By combining short-term sessions and long-term behavior,user dynamic preferences are captured.Extensive experiments were conducted on three session-based recommendation datasets,and compared to the baseline methods,both the recall rate Recall@20 and the mean reciprocal rank MRR@20 of the SGT algorithm were improved,demonstrating the effectiveness of the SGT method.
基金support of the National Natural Science Foundation of China(Grant Nos.62172283 and 61836005).
文摘Session-based recommendation(SBR)and multibehavior recommendation(MBR)are both important problems and have attracted the attention of many researchers and practitioners.Different from SBR that solely uses one single type of behavior sequences and MBR that neglects sequential dynamics,heterogeneous SBR(HSBR)that exploits different types of behavioral information(e.g.,examinations like clicks or browses,purchases,adds-to-carts and adds-to-favorites)in sequences is more consistent with real-world recommendation scenarios,but it is rarely studied.Early efforts towards HSBR focus on distinguishing different types of behaviors or exploiting homogeneous behavior transitions in a sequence with the same type of behaviors.However,all the existing solutions for HSBR do not exploit the rich heterogeneous behavior transitions in an explicit way and thus may fail to capture the semantic relations between different types of behaviors.However,all the existing solutions for HSBR do not model the rich heterogeneous behavior transitions in the form of graphs and thus may fail to capture the semantic relations between different types of behaviors.The limitation hinders the development of HSBR and results in unsatisfactory performance.As a response,we propose a novel behavior-aware graph neural network(BGNN)for HSBR.Our BGNN adopts a dual-channel learning strategy for differentiated modeling of two different types of behavior sequences in a session.Moreover,our BGNN integrates the information of both homogeneous behavior transitions and heterogeneous behavior transitions in a unified way.We then conduct extensive empirical studies on three real-world datasets,and find that our BGNN outperforms the best baseline by 21.87%,18.49%,and 37.16%on average correspondingly.A series of further experiments and visualization studies demonstrate the rationality and effectiveness of our BGNN.An exploratory study on extending our BGNN to handle more than two types of behaviors show that our BGNN can easily and effectively be extended to multibehavior scenarios.
基金supported by the National Natural Science Foundation of China(No.62276278)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110006).
文摘Popularity plays a significant role in the recommendation system. Traditional popularity is only defined as a static ratio or metric (e.g., a ratio of users who have rated the item and the box office of a movie) regardless of the previous trends of this ratio or metric and the attribute diversity of items. To solve this problem and reach accurate popularity, we creatively propose to extract the popularity of an item according to the Proportional Integral Differential (PID) idea. Specifically, Integral (I) integrates a physical quantity over a time window, which agrees with the fact that determining the attributes of items also requires a long-term observation. The Differential (D) emphasizes an incremental change of a physical quantity over time, which coincidentally caters to a trend. Moreover, in the Session-Based Recommendation (SBR) community, many methods extract session interests without considering the impact of popularity on interest, leading to suboptimal recommendation results. To further improve recommendation performance, we propose a novel strategy that leverages popularity to enhance the session interest (popularity-aware interest). The proposed popularity by PID is further used to construct the popularity-aware interest, which consistently improves the recommendation performance of the main models in the SBR community. For STAMP, SRGNN, GCSAN, and TAGNN, on Yoochoose1/64, the metric P@20 is relatively improved by 0.93%, 1.84%, 2.02%, and 2.53%, respectively, and MRR@20 is relatively improved by 3.74%, 1.23%, 2.72%, and 3.48%, respectively. On Movieslen-1m, the relative improvements of P@20 are 7.41%, 15.52%, 8.20%, and 20.12%, respectively, and that of MRR@20 are 2.34%, 12.41%, 20.34%, and 19.21%, respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.62072288,61702306,61433012)the Taishan Scholar Program of Shandong Province,the Natural Science Foundation of Shandong Province(ZR2018BF013,ZR2022MF268)the Open Project from CAS Key Lab of Network Data Science and Technology(CASNDST202007).
文摘Session-based recommendation is a popular research topic that aims to predict users’next possible interactive item by exploiting anonymous sessions.The existing studies mainly focus on making predictions by considering users’single interactive behavior.Some recent efforts have been made to exploit multiple interactive behaviors,but they generally ignore the influences of different interactive behaviors and the noise in interactive sequences.To address these problems,we propose a behavior-aware graph neural network for session-based recommendation.First,different interactive sequences are modeled as directed graphs.Thus,the item representations are learned via graph neural networks.Then,a sparse self-attention module is designed to remove the noise in behavior sequences.Finally,the representations of different behavior sequences are aggregated with the gating mechanism to obtain the session representations.Experimental results on two public datasets show that our proposed method outperforms all competitive baselines.The source code is available at the website of GitHub.
文摘Session-based recommendation aims to predict the next item based on a user’s limited interactions within a short period.Existing approaches use mainly recurrent neural networks(RNNs)or graph neural networks(GNNs)to model the sequential patterns or the transition relationships between items.However,such models either ignore the over-smoothing issue of GNNs,or directly use cross-entropy loss with a softmax layer for model optimization,which easily results in the over-fitting problem.To tackle the above issues,we propose a self-supervised graph learning with target-adaptive masking(SGL-TM)method.Specifically,we first construct a global graph based on all involved sessions and subsequently capture the self-supervised signals from the global connections between items,which helps supervise the model in generating accurate representations of items in the ongoing session.After that,we calculate the main supervised loss by comparing the ground truth with the predicted scores of items adjusted by our designed target-adaptive masking module.Finally,we combine the main supervised component with the auxiliary self-supervision module to obtain the final loss for optimizing the model parameters.Extensive experimental results from two benchmark datasets,Gowalla and Diginetica,indicate that SGL-TM can outperform state-of-the-art baselines in terms of Recall@20 and MRR@20,especially in short sessions.
基金supported by the Chung-Ang University Research Grants in 2023.Alsothe work is supported by the ELLIIT Excellence Center at Linköping–Lund in Information Technology in Sweden.
文摘Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.
基金supported by National Natural Science Foundation of China(62072416)Key Research and Development Special Project of Henan Province(221111210500)Key TechnologiesR&DProgram of Henan rovince(232102211053,242102211071).
文摘The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term interests.However,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior sequences.Consequently,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their interests.This paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)framework.This study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention mechanism.Additionally,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user interests.Experimental results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance indicators.This advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns.
文摘This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis based on 36 sets of generalized fuzzy numbers was performed, in which the degree of similarity of the fuzzy numbers was calculated with the proposed method and seven methods established by previous studies in the literature. The results of the analytical comparison show that the proposed similarity outperforms the existing methods by overcoming their drawbacks and yielding accurate outcomes in all calculations of similarity measures under consideration. Finally, in a numerical example that involves recommending cars to customers based on a nine-member linguistic term set, the proposed similarity measure proves to be competent in addressing fuzzy number recommendation problems.
基金supported by the National Natural Science Foundation of China(No.72471236)the National Defense Science and Technology Basic Strengthening Project(No.2021-JCJQ-QT-050).
文摘Knowledge graphs(KGs)have garnered significant attention in recommender systems as auxiliary information.Most existing studies consider an item as an entity of a KG and utilize graph neural networks to learn item representations.However,two challenges exist regarding these algorithms:1)they provide recommended results but fail to explain the reason for which they are preferred by users;2)user vector representations are concentrated in a small area,thus resulting in similar mass recommendations.In this study,we focus on learning fine-grained user preferences(LFUP)via user-item interactions and using KGs that can capture the reason for which users interact with items.Additionally,a personalized recommendation task is achieved by optimizing the distribution of users in the vector space.User preferences are modeled by using historical interaction items pertaining to users and important relations within the KG.Subsequently,information from two views is aggregated to reduce the semantic differences between them.Finally,user preferences are personalized by maximizing the spatial distance between various user representations via contrastive learning.Experiments on public datasets prove that LFUP significantly benefits user-preference modeling and personalized recommendations.
基金supported by a grant from the Natural Science Foundation of Zhejiang Province under Grant LY21F010016.
文摘Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency information,which makes them ineffective in balancing users’long-and short-term preferences.At the same time,manymethods overlook the potential of frequency domainmethods,ignoring their efficiency in processing frequency information.To overcome this limitation,we shift the focus to the combination of time and frequency domains and propose a novel Hybrid Time-Frequency Dual-Branch Transformer for Sequential Recommendation,namely HyTiFRec.Specifically,we design two hybrid filter modules:the learnable hybrid filter(LHF)and the window hybrid filter(WHF).We combine these with the Efficient Attention(EA)module to form the dual-branch structure to replace the self-attention components in Transformers.The EAmodule is used to extract sequential and global information.The LHF andWHF modules balance the proportion of different frequency bands,with LHF globally modulating the spectrum in the frequency domain and WHF retaining frequency components within specific local frequency bands.Furthermore,we use a time domain residual information addition operation in the hybrid filter module,which reduces information loss and further facilitates the hybrid of time-frequency methods.Extensive experiments on five widely-used real-world datasets show that our proposed method surpasses state-of-the-art methods.
基金Supported by Key R&D Projects of Hunan Provincial Department of Science and Technology"Study on Key Modern Processing Techniques and Product Development of Huarong Mustard"(2023NK2039).
文摘A survey conducted on the premature bolting of Huarong large leaf mustard from 2018 to 2024 revealed that Huarong large leaf mustard sown in middle August was associated with a higher propensity for premature bolting. Furthermore, it was observed that the earlier being sown, the greater the rate of premature bolting when being sown prior to middle August. The rate of premature bolting observed in seedlings sown on August 8 was recorded at 35.6%. It was noted that as the age of the seedlings increased, the rate of premature bolting correspondingly increased. There were notable differences in the tolerance of various cultivars to elevated temperatures and prolonged sunlight exposure. For instance, cultivars such as Zhangjie 1 and Sichuan Shaguodi, which exhibit greater heat resistance, did not demonstrate premature bolting when sown in early August. The prolonged exposure to elevated temperatures, drought conditions, and extended periods of sunlight during the seedling stage of Huarong large leaf mustard, coupled with delayed irrigation and transplantation, contributed to the occurrence of premature bolting. The Huarong large leaf mustard, when been sown from late August to early September and transplanted at the appropriate time, exhibited normal growth and development, with no instances of premature bolting observed. It is advisable to select heat-resistant varieties, such as Zhangjie 1, prior to middle August. Huarong large leaf mustard should be sown in early to middle September. Additionally, it is essential to ensure centralized production and timely release of seeds, prompt transplantation and harvesting, and enhance the management of pests and diseases.
基金supported by the Key Research and Development Program of Heilongjiang Province(No.2022ZX01A35).
文摘As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates.
文摘This paper examines the impact of algorithmic recommendations and data-driven marketing on consumer engagement and business performance.By leveraging large volumes of user data,businesses can deliver personalized content that enhances user experiences and increases conversion rates.However,the growing reliance on these technologies introduces significant risks,including privacy violations,algorithmic bias,and ethical concerns.This paper explores these challenges and provides recommendations for businesses to mitigate associated risks while optimizing marketing strategies.It highlights the importance of transparency,fairness,and user control in ensuring responsible and effective data-driven marketing.
文摘This special issue of the Asian Journal of Andrology is fully dedicated to the thematic area of non-obstructive azoospermia(NOA),one of the most complex and challenging conditions in the realm of andrology,urology,and reproductive medicine.
文摘In the era of exponential growth of digital information,recommender algorithms are vital for helping users navigate vast data to find relevant items.Traditional approaches such as collaborative filtering and contentbasedmethods have limitations in capturing complex,multi-faceted relationships in large-scale,sparse datasets.Recent advances in Graph Neural Networks(GNNs)have significantly improved recommendation performance by modeling high-order connection patterns within user-item interaction networks.However,existing GNN-based models like LightGCN and NGCF focus primarily on single-type interactions and often overlook diverse semantic relationships,leading to reduced recommendation diversity and limited generalization.To address these challenges,this paper proposes a dual multi-relational graph neural network recommendation algorithm based on relational interactions.Our approach constructs two complementary graph structures:a User-Item Interaction Graph(UIIG),which explicitly models direct user behaviors such as clicks and purchases,and a Relational Association Graph(RAG),which uncovers latent associations based on user similarities and item attributes.The proposed Dual Multi-relational Graph Neural Network(DMGNN)features two parallel branches that perform multi-layer graph convolutional operations,followed by an adaptive fusion mechanism to effectively integrate information from both graphs.This design enhances the model’s capacity to capture diverse relationship types and complex relational patterns.Extensive experiments conducted on benchmark datasets—including MovieLens-1M,Amazon-Electronics,and Yelp—demonstrate thatDMGNN outperforms state-of-the-art baselines,achieving improvements of up to 12.3%in Precision,9.7%in Recall,and 11.5%in F1 score.Moreover,DMGNN significantly boosts recommendation diversity by 15.2%,balancing accuracy with exploration.These results highlight the effectiveness of leveraging hierarchical multi-relational information,offering a promising solution to the challenges of data sparsity and relation heterogeneity in recommendation systems.Our work advances the theoretical understanding of multi-relational graph modeling and presents practical insights for developing more personalized,diverse,and robust recommender systems.
基金supported by the Key Research and Development Program of Zhejiang Province(No.2024C01071)the Natural Science Foundation of Zhejiang Province(No.LQ15F030006).
文摘Tag recommendation systems can significantly improve the accuracy of information retrieval by recommending relevant tag sets that align with user preferences and resource characteristics.However,metric learning methods often suffer from high sensitivity,leading to unstable recommendation results when facing adversarial samples generated through malicious user behavior.Adversarial training is considered to be an effective method for improving the robustness of tag recommendation systems and addressing adversarial samples.However,it still faces the challenge of overfitting.Although curriculum learning-based adversarial training somewhat mitigates this issue,challenges still exist,such as the lack of a quantitative standard for attack intensity and catastrophic forgetting.To address these challenges,we propose a Self-Paced Adversarial Metric Learning(SPAML)method.First,we employ a metric learning model to capture the deep distance relationships between normal samples.Then,we incorporate a self-paced adversarial training model,which dynamically adjusts the weights of adversarial samples,allowing the model to progressively learn from simpler to more complex adversarial samples.Finally,we jointly optimize the metric learning loss and self-paced adversarial training loss in an adversarial manner,enhancing the robustness and performance of tag recommendation tasks.Extensive experiments on the MovieLens and LastFm datasets demonstrate that SPAML achieves F1@3 and NDCG@3 scores of 22%and 32.7%on the MovieLens dataset,and 19.4%and 29%on the LastFm dataset,respectively,outperforming the most competitive baselines.Specifically,F1@3 improves by 4.7%and 6.8%,and NDCG@3 improves by 5.0%and 6.9%,respectively.
基金supported by the Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2025R259)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia+1 种基金supported by the Researchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.
文摘With the increasing complexity of hotel selection,traditional decision-making models often struggle to account for uncertainty and interrelated criteria.Multi-criteria decision-making(MCDM)techniques,particularly those based on fuzzy logic,provide a robust framework for handling such challenges.This paper presents a novel approach to MCDM within the framework of Circular Intuitionistic Fuzzy Sets(C-IFS)by combining three distinct methodologies:Weighted Aggregated Sum Product Assessment(WASPAS),an Alternative Ranking Order Method Accounting for Two-Step Normalization(AROMAN),and the CRITIC method(Criteria Importance Through Inter-criteria Correlation).To address the dynamic nature of traveler preferences in hotel selection,the study employs a comprehensive set of criteria encompassing aspects such as location proximity,amenities,pricing,customer reviews,environmental impact,safety,booking flexibility,and cultural experiences.The CRITIC method is used to determine the importance of each criterion by assessing intercriteria correlations.AROMAN is employed for the systematic evaluation of alternatives,considering their additive relationships and providing a weighted assessment.WASPAS further analyzes the results obtained from AROMAN,incorporating both positive and negative aspects for a comprehensive evaluation.The integration of C-IFS enhances the model’s ability to manage uncertainty and imprecision in the decision-making process.Through a case study,we demonstrate the effectiveness of this integrated approach,offering decision-makers valuable insights for selecting the most suitable hotel option in alignment with the diverse preferences of contemporary travelers.This research contributes to the evolving field of decision science by showcasing the practical applicability of these methodologies within a C-IFS framework for complex decision scenarios.