期刊文献+
共找到562篇文章
< 1 2 29 >
每页显示 20 50 100
Research progress and application of carbon sequestration in industrial flue gas by microalgae: A review 被引量:3
1
作者 Rui Wang Xue Wang Tingyu Zhu 《Journal of Environmental Sciences》 2025年第6期14-28,共15页
Global warming caused by the emission of CO_(2) in industrial flue gas has attractedmore and more attention.Therefore,to fix CO_(2) with high efficiency and environmentally friendly had become the hot research field.C... Global warming caused by the emission of CO_(2) in industrial flue gas has attractedmore and more attention.Therefore,to fix CO_(2) with high efficiency and environmentally friendly had become the hot research field.Compared with the traditional coal-fired power plant flue gas emission reduction technology,carbon fixation and emission reduction by microalgae is considered as a promising technology due to the advantages of simple process equipment,convenient operation and environmental protection.When the flue gas is treated by microalgae carbon fixation and emission reduction technology,microalgae cells can fix CO_(2) in the flue gas through photosynthesis,and simultaneously absorb NO_(x) and SO_(x) as nitrogen and sulfur sources required for growth.Meanwhile,they can also absorb mercury,selenium,arsenic,cadmium,lead and other heavy metal ions in the flue gas to obtain microalgae biomass.The obtained microalgae biomass can be further transformed into high valueadded products,which has broad development prospects.This paper reviews the mechanisms and pathways of CO_(2) sequestration,the mechanism and impacts of microalgal emission reduction of flue gas pollutants,and the applications of carbon sequestration in industrial flue gas by microalgae.Finally,this paper provides some guidelines and prospects for the research and application of green emission reduction technology for industrial flue gas. 展开更多
关键词 MICROALGAE Bio-mitigation Flue gas Carbon sequestration Carbon emission reduction Photosynthetic carbon fixation
原文传递
Enhancing carbon sequestration and greenhouse gas mitigation in semiarid farmland:The promising role of biochar application with biodegradable film mulching 被引量:2
2
作者 Jinwen Pang Zhonghong Tian +9 位作者 Mengjie Zhang Yuhao Wang Tianxiang Qi Qilin Zhang Enke Liu Weijun Zhang Xiaolong Ren Zhikuan Jia Kadambot H.M.Siddique Peng Zhang 《Journal of Integrative Agriculture》 2025年第2期517-535,共19页
Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising... Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising solution for addressing these issues.In this study,we investigated the effects of four biochar application rates(no biochar(N)=0 t ha^(-1),low(L)=3 t ha^(-1),medium(M)=6 t ha^(-1),and high(H)=9 t ha^(-1))under film mulching and no mulching conditions over three growing seasons.We assessed the impacts on GHG emissions,soil organic carbon sequestration(SOCS),and maize yield to evaluate the productivity and sustainability of farmland ecosystems.Our results demonstrated that mulching increased maize yield(18.68-41.80%),total fixed C in straw(23.64%),grain(28.87%),and root(46.31%)biomass,and GHG emissions(CO_(2),10.78%;N_(2)O,3.41%),while reducing SOCS(6.57%)and GHG intensity(GHGI;13.61%).Under mulching,biochar application significantly increased maize yield(10.20%),total fixed C in straw(17.97%),grain(17.69%)and root(16.75%)biomass,and SOCS(4.78%).Moreover,it reduced the GHG emissions(CO_(2),3.09%;N_(2)O,6.36%)and GHGI(12.28%).These effects correlated with the biochar addition rate,with the optimal rate being 9.0 t ha^(-1).In conclusion,biochar application reduces CO_(2) and N_(2)O emissions,enhances CH_(4) absorption,and improves maize yield under film mulching.It also improves the soil carbon fixation capacity while mitigating the warming potential,making it a promising sustainable management method for mulched farmland in semiarid areas. 展开更多
关键词 BIOCHAR film mulching greenhouse gas emissions carbon sequestration
在线阅读 下载PDF
Assessing the Carbon Sequestration Potential of Human-Controlled Wetlands:A Remote Sensing Approach Using Google Earth Engine
3
作者 Doimi Mauro LD’Amanzo G.Minetto 《Journal of Environmental Science and Engineering(A)》 2025年第2期140-150,共11页
Blue carbon ecosystems,including mangroves,seagrasses,and salt marshes,play a crucial role in mitigating climate change by capturing and storing atmospheric CO_(2)at rates exceeding those of terrestrial forests.This s... Blue carbon ecosystems,including mangroves,seagrasses,and salt marshes,play a crucial role in mitigating climate change by capturing and storing atmospheric CO_(2)at rates exceeding those of terrestrial forests.This study explores the potential of HCWs(Human-Controlled Wetlands)in the Italian Venice Lagoon as an underappreciated component of the global blue carbon pool.Using GEE(Google Earth Engine),we conducted a large-scale assessment of carbon sequestration in these wetlands,demonstrating its advantages over traditional in situ methods in addressing spatial variability.Our findings highlight the significance of below-water mud sediments as primary carbon reservoirs,with a TC(Total Carbon)content of 3.81%±0.94%and a stable storage function akin to peat,reinforced by high CEC(Cation Exchange Capacity).GEE analysis identified a redoximorphic zone at a depth of 20-30 cm,where microbial respiration shifts to anaerobic pathways,preventing carbon release and maintaining long-term sequestration.The study also evaluates key factors affecting remote sensing accuracy,including tidal variations,water depth,and sky cover.The strong correlation between field-measured and satellite-derived carbon parameters(R^(2)>0.85)confirms the reliability of our approach.Furthermore,we developed a GEE-based script for monitoring sediment bioturbation,leveraging Sentinel-1 SAR(Synthetic Aperture Radar)and Sentinel-2 optical data to quantify biological disturbances affecting carbon fluxes.Our results underscore the value of HCWs for carbon sequestration,reinforcing the need for targeted conservation strategies.The scalability and efficiency of remote sensing methodologies,particularly GEE,make them essential for the long-term monitoring of blue carbon ecosystems and the development of effective climate mitigation policies. 展开更多
关键词 Blue carbon HCWs GEE carbon sequestration remote sensing BIOTURBATION redoximorphic zone carbon flux
在线阅读 下载PDF
Microbial life strategies-mediated differences in carbon metabolism explain the variation in SOC sequestration between Kandelia obovata and Sonneratia apetala
4
作者 Fuyuan Duan Fengxiao Tan +5 位作者 Xuming Zhao Hui Feng Jiakai Wang Hao Peng Nannan Zhang Yelin Huang 《Forest Ecosystems》 2025年第5期841-851,共11页
Soil organic carbon(SOC)plays a crucial role in mangrove blue carbon formation,yet the differences in microbemediated underlying SOC sequestration between introduced and native mangroves remain unclear.Here,we compare... Soil organic carbon(SOC)plays a crucial role in mangrove blue carbon formation,yet the differences in microbemediated underlying SOC sequestration between introduced and native mangroves remain unclear.Here,we compared the SOC pool,including recalcitrant organic carbon(ROC)and labile carbon pools,as well as three residual carbon sources(amino sugars,lignin phenols,and lipids)in sediments between mangroves of introduced Sonneratia apetala and native Kandelia obovata,and further connected them with microbial life strategies and C metabolism capability.The results showed that SOC accumulation in S.apetala(SA)sediment was about 30%-50% of that in K.obovata(KO)sediment.ROC was the dominant form of SOC in long-term sequestration(76%-83%),while lignin phenols,amino sugars,and lipids were important sources of ROC.In S.apetala sediments,the ROC content was positively correlated with amino sugars,resulting from the more r-strategist microbes that can rapidly convert plant-derived carbon into microbial biomass,which is subsequently transformed into microbial necromass.In contrast,in K.obovata sediments,ROC content showed a stronger positive correlation with the concentrations of lignin phenols and lipids.More K-strategist fungi in the topsoil of K.obovata increased enzyme activities,while more K-strategist bacteria in the subsoil enhanced carbon utilization capacity,thereby increasing lignin phenols and lipids from plant residues in both soil layers.Meanwhile,higher Ca^(2+)concentrations in K.obovata sediments protected three residual carbons from further microbe decomposition.This study provides valuable insights into the molecular mechanisms of SOC sequestration mediated by microbial life strategies in mangrove ecosystems. 展开更多
关键词 Soil carbon sequestration Microbial life strategies Carbon metabolism capability Microbial necromass Sonneratia apetala Kandelia obovata
在线阅读 下载PDF
Carbon sequestration potential and mechanisms of shotcrete for tunnel support in underground metal mines through cement hydration
5
作者 Qiusong Chen Chao Zhang +2 位作者 Daolin Wang Yikai Liu Chongchong Qi 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1496-1506,共11页
Growing concerns about greenhouse gas emissions from underground mining have intensified the need for carbon reduction strategies at every stage.Shotcrete used in tunnel support presents a promising opportunity for ca... Growing concerns about greenhouse gas emissions from underground mining have intensified the need for carbon reduction strategies at every stage.Shotcrete used in tunnel support presents a promising opportunity for carbon emission reduction.This study investigates the carbon absorption capacity,mechanical strength,and underlying mechanisms of shotcrete when exposed to varying CO_(2)concentrations during the mine support process.Findings reveal that higher CO_(2)concentrations during the initial stages of carbonation curing enhance early strength but may impede long-term strength development.Shotcrete samples exposed to 2vol%CO_(2)for 14 d exhibited a carbonation degree approximately three times higher than those exposed to 0.03vol%CO_(2).A carbonation layer formed in the shotcrete,sequestering CO_(2)as solid carbonates.In practical terms,shotcrete in an underground return-air tunnel absorbed 1.1 kg·m^(2)of CO_(2)over 14 d,equivalent to treating 33 m^(3)of contaminated air.Thus,using shotcrete for CO_(2)curing in return-air tunnels can significantly reduce carbon emissions,contributing to greener and more sustainable mining practices. 展开更多
关键词 green mine shotcrete support carbon sequestration carbon absorption cement hydration
在线阅读 下载PDF
Near Gas-Water Contact Sequestration of Carbon Dioxide to Improve the Performance of Water Drive Gas Reservoir: Case Study
6
作者 Mohammad Amin Safarzadeh Hossein Zangeneh Javad Kasravi 《Computational Water, Energy, and Environmental Engineering》 2025年第1期1-15,共15页
This study investigates the application of carbon dioxide (CO2) sequestration to address challenges in water-drive gas reservoirs, specifically focusing on improving gas recovery and mitigating water invasion. Traditi... This study investigates the application of carbon dioxide (CO2) sequestration to address challenges in water-drive gas reservoirs, specifically focusing on improving gas recovery and mitigating water invasion. Traditional methods like blow-down and co-production have limitations, including sand production, water coning, and inefficiency in strong aquifers. To overcome these issues, this research explores CO2 injection near the edge aquifer, aiming to reduce water influx and enhance gas recovery through the propagation of a CO2 plume in the gas-water contact zone. Both synthetic and real compositional reservoir models were studied, with CO2 injection performed while maintaining reservoir pressure below 90% of the initial level. Results show that CO2 sequestration significantly improved recovery, particularly in higher permeability reservoirs, where it reduced aquifer influx and increased gas production by 26% under challenging conditions. While CO2 dissolution in water decreased aquifer influx by 39%, its adverse effect on sweep efficiency led to a reduction in gas and water production by 4.2% and 10%, respectively. The method's effectiveness was not significantly impacted by aquifer permeability, but it was sensitive to vertical-to-horizontal permeability ratios. When applied to a real gas reservoir, the proposed method increased gas production by 14% compared to conventional techniques, with minimal CO2 production over a 112-year period. This study demonstrates the potential of CO2 sequestration as a comprehensive solution for enhancing gas recovery, reducing water production, and mitigating environmental impacts in water-drive gas reservoirs. 展开更多
关键词 Gas Reservoir Water Encroachment Residual Gas Saturation Aquifer Influx Carbon Dioxide sequestration Hazardous Water Production
在线阅读 下载PDF
Impact of dissolution and precipitation on pore structure in CO_(2)sequestration within tight sandstone reservoirs
7
作者 Hui Gao Kai-Qing Luo +6 位作者 Chen Wang Teng Li Zhi-Lin Cheng Liang-Bin Dou Kai Zhao Nan Zhang Yue-Liang Liu 《Petroleum Science》 2025年第2期868-883,共16页
Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehens... Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehensive physical simulation experiments were conducted under varied pressures,coupled with assessments of changes in mineral composition,ion concentrations,pore morphology,permeability,and sequestration capacity before and after experimentation.Simultaneously,a method using NMR T2spectra changes to measure pore volume shift and estimate CO_(2)sequestration is introduced.It quantifies CO_(2)needed for mineralization of soluble minerals.However,when CO_(2)dissolves in crude oil,the precipitation of asphaltene compounds impairs both seepage and storage capacities.Notably,the impact of dissolution and precipitation is closely associated with storage pressure,with a particularly pronounced influence on smaller pores.As pressure levels rise,the magnitude of pore alterations progressively increases.At a pressure threshold of 25 MPa,the rate of change in small pores due to dissolution reaches a maximum of 39.14%,while precipitation results in a change rate of-58.05%for small pores.The observed formation of dissolution pores and micro-cracks during dissolution,coupled with asphaltene precipitation,provides crucial insights for establishing CO_(2)sequestration parameters and optimizing strategies in low permeability reservoirs. 展开更多
关键词 DISSOLUTION PRECIPITATION Pore structure CO_(2)sequestration Unconventional reservoirs
原文传递
Comparing carbon sequestration efficiency in chemically separated soil organic carbon fractions under long-term fertilization in three major Chinese croplands
8
作者 Hu Xu Adnan Mustafa +5 位作者 Lu Zhang Shaomin Huang Hongjun Gao Mohammad Tahsin Karimi Nezhad Nan Sun Minggang Xu 《Journal of Integrative Agriculture》 2025年第7期2841-2856,共16页
The combined application of organic manure and chemical fertilizers is an effective way to enhance soil organic carbon(SOC)sequestration through its influences on organic carbon(OC)input and the stability of SOC fract... The combined application of organic manure and chemical fertilizers is an effective way to enhance soil organic carbon(SOC)sequestration through its influences on organic carbon(OC)input and the stability of SOC fractions.However,there is limited information on the carbon sequestration efficiency(CSE)of chemically separated SOC fractions and its response to OC input under long-term fertilization regimes,especially at different sites.This study used three long-term fertilization experiments in Gongzhuling,Zhengzhou and Qiyang spanning 20 years to compare the stocks and CSE in four different OC fractions(very labile OC,labile OC,less labile OC,and non-labile OC)and their relationships with annual OC input.Three treatments of no fertilization(CK),chemical nitrogen,phosphorous,and potassium fertilizers(NPK),and chemical NPK combined with manure(NPKM)were employed.The results showed that compared with CK,NPKM resulted in enhanced SOC stocks and sequestration rates as well as CSE levels of all fractions irrespective of experimental site.Specifically for the very labile and non-labile OC fractions,NPKM significantly increased the SOC stocks by 43 and 83%,77 and 86%,and 73 and 82%in Gongzhuling,Qiyang,and Zhengzhou relative to CK,respectively.However,the greatest changes in SOC stock relative to the initial value were associated with non-labile OC fractions in Gongzhuling,Zhengzhou,and Qiyang,which reached 6.65,7.16,and 7.35 Mg ha^(-1) under NPKM.Similarly,the highest CSE was noted for non-labile OC fractions under NPKM followed sequentially by the very labile OC,labile OC,and less-labile OC fractions,however a CSE of 8.56%in the non-labile OC fraction for Gongzhuling was higher than the values of 6.10 and 4.61%in Zhengzhou and Qiyang,respectively.In addition,the CSE for the passive pool(very labile+labile OC fractions)was higher than the active pool(less-labile+non-labile OC fractions),with the highest value in Gongzhuling.The redundancy analysis revealed that the CSEs of fractions and pools were negatively influenced by annual OC input,mean annual precipitation and temperature,but positively influenced by the initial SOC and total nitrogen contents.This suggests that differential stability of sequestered OC is further governed by indigenous site characteristics and variable amounts of annual OC input. 展开更多
关键词 long-term field experiment fertilization carbon sequestration efficiency organic carbon stability organic carbon fractionation
在线阅读 下载PDF
Time-evolution of ScCO_(2)-weakened coal integrity:Chemo-hydromechanical coupling and geological sequestration implications
9
作者 Peng Liu Jingtao Yang +4 位作者 Baisheng Nie Ang Liu Wei Zhao Hao Xu Hengyi He 《International Journal of Mining Science and Technology》 2025年第6期961-973,共13页
Geological sequestration of CO_(2)is critical for deep decarbonization,but the geomechanical stability of coal reservoirs remains a major challenge.This study integrates nanoindentation,XRD/SEM-EDS chemo physical char... Geological sequestration of CO_(2)is critical for deep decarbonization,but the geomechanical stability of coal reservoirs remains a major challenge.This study integrates nanoindentation,XRD/SEM-EDS chemo physical characterization and 4D CT visualization to investigate the time-evolving mechanical degradation of bituminous coals with ScCO_(2)injection.The main results show that 4 d of ScCO_(2)treatment caused 50.47%–80.99%increase in load–displacement deformation and 26.92%–76.17%increase in creep depth at peak load,accompanied by 55.01%–63.38%loss in elastic modulus and 52.83%–74.81%reduction in hardness.The degradation exhibited biphasic kinetics,characterized by rapid surface-driven weakening(0–2 d),followed by stabilized matrix-scale pore homogenization(2–4 d).ScCO_(2)preferentially dissolved carbonate minerals(dolomite),driving pore network expansion and interfacial debonding,while silicate minerals resisted dissolution but promoted structural homogenization.These coupled geochemical-mechanical processes reduced the mechanical heterogeneity of the coal and altered its failure modes.The results establish a predictive framework for reservoir stability assessment and provide actionable insights for optimizing CO_(2)enhanced coalbed methane recovery. 展开更多
关键词 CO_(2)sequestration NANOINDENTATION Reservoirs stability Coal mechanics
在线阅读 下载PDF
Stimulation of tight basalt reservoirs using supercritical carbon dioxide: Implications for large-scale carbon sequestration
10
作者 Xiufeng Zhang Fengshou Zhang +3 位作者 Xuehang Song Junjie Wei Shuyuan Liu Jiangmei Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3577-3592,共16页
Although supercritical carbon dioxide(SC-CO_(2))fracturing shows tremendous potential for maximizing injection efficiency and enhancing storage volumes,few investigations have been reported on the SC-CO_(2) fracturing... Although supercritical carbon dioxide(SC-CO_(2))fracturing shows tremendous potential for maximizing injection efficiency and enhancing storage volumes,few investigations have been reported on the SC-CO_(2) fracturing characteristics of tight basalts and the reactions between fractured basalt and SC-CO_(2).In this study,hydraulic fracturing experiments were conducted on cylindrical basalt specimens using water and SC-CO_(2) as fracturing fluids.Geometric parameters were proposed to characterize the fracture morphologies based on the three-dimensional(3D)reconstructions of fracture networks.The rock slices with induced fractures after SC-CO_(2) fracturing were then processed for fluid(deionized water/SC-CO_(2))-basalt reaction tests.The experimental results demonstrate that SC-CO_(2) fracturing can induce complex and tortuous fractures with spatially dispersed morphologies.Other fracturing behaviors accompanying the acoustic emission(AE)signals and pump pressure changes show that the AE activity responds almost simultaneously to variation in the pump pressure.The fractured basalt blocks exposed to both SC-CO_(2) and water exhibit rough and uneven surfaces,along with decreased intensities in the element peaks,indicating that solubility trapping predominantly occurs during the early injection stage.The above findings provide a laboratory research basis for understanding the fracturing and sequestration issues related to effective CO_(2) utilization. 展开更多
关键词 BASALT Supercritical carbon dioxide(SC-CO_(2)) Hydraulic fracturing Induced fracture Carbon sequestration
在线阅读 下载PDF
Experimental studies on CO_(2) sequestration via enhanced rock weathering in seawater: Insights for climate change mitigation strategies in coastal and open ocean environments
11
作者 Arshad Ali Muhammad I.Kakar +3 位作者 Mohamed A.K.El-Ghali Hafi z Ur Rehman Iftikhar A.Abbasi Mohamed Moustafa 《Acta Geochimica》 2025年第3期496-512,共17页
Enhanced weathering(EW)of ultramafi c rocks from the Muslim Bagh Ophiolite,Pakistan,has been studied in laboratory experiments to explore carbon sequestration as a climate change mitigation strategy for coastal and op... Enhanced weathering(EW)of ultramafi c rocks from the Muslim Bagh Ophiolite,Pakistan,has been studied in laboratory experiments to explore carbon sequestration as a climate change mitigation strategy for coastal and open sea environments.The research focused on a cost-eff ective ex situ experiment to examine the eff ects of EW reaction pathways arising from the interactions among rock powder,seawater and CO_(2).The experimental fi ltrates from diff erent milled peridotite samples exhibit a decrease in the Mg/Ca ratio as the specifi c surface area increases,which accelerates reaction rates.This suggests that the leached Mg from the original rock may have been consumed in the formation of brucite,serpentine and carbonates during EW.Similar reaction pathways are also responsible for the chemical alterations observed in amphibolite,albeit to varying degrees.On the other hand,the experimental residues showed an increase in loss on ignition compared to the original rock,indicating that EW has facilitated the incorporation of H 2 O and CO_(2) into secondary mineral structures through various reaction pathways,leading to the formation of brucite,serpentine and carbonates.Thermal gravimetric analysis of the experimental residues confi rms the presence of these minerals based on their decomposition temperatures.Additionally,XRD analysis identifi ed a range of carbonates in the residues of both peridotite and amphibolite samples,validating the occurrence of carbonation reactions.SEM images reveal textural changes in both samples,supporting the formation of secondary minerals through EW,consistent with observations from the petrographic study of untreated samples.Control experiments on CO_(2) absorption in seawater showed a decrease in pH,highlighting ocean acidifi cation from increased CO_(2) emissions.However,when rock powder was added to the seawater-CO_(2) mixture,the pH increased.This suggests that the EW of ultramafi c rock powders can sequester CO_(2) while raising seawater pH through the formation of secondary minerals.This research could serve as an analog for EW applications,considering the worldwide abundance of ultramafi c rocks and the availability of coastal and open ocean environments.However,further research is required to understand the behavior of other elements and their impacts on ocean chemistry in EW processes before applying CO_(2) sequestration strategies. 展开更多
关键词 CO_(2)sequestration Ocean acidifi cation Coastal enhanced weathering Muslim Bagh Ophiolite Carbon mineralization Peridotite
在线阅读 下载PDF
Deep learning-assisted optimization for enhanced oil recovery and CO_(2) sequestration considering gas channeling constraints
12
作者 Xin-Yu Zhuang Wen-Dong Wang +2 位作者 Yu-Liang Su Zhen-Xue Dai Bi-Cheng Yan 《Petroleum Science》 2025年第8期3397-3417,共21页
Carbon dioxide Enhanced Oil Recovery(CO_(2)-EOR)technology guarantees substantial underground CO_(2) sequestration while simultaneously boosting the production capacity of subsurface hydrocarbons(oil and gas).However,... Carbon dioxide Enhanced Oil Recovery(CO_(2)-EOR)technology guarantees substantial underground CO_(2) sequestration while simultaneously boosting the production capacity of subsurface hydrocarbons(oil and gas).However,unreasonable CO_(2)-EOR strategies,encompassing well placement and well control parameters,will lead to premature gas channeling in production wells,resulting in large amounts of CO_(2) escape without any beneficial effect.Due to the lack of prediction and optimization tools that integrate complex geological and engineering information for the widely used CO_(2)-EOR technology in promising industries,it is imperative to conduct thorough process simulations and optimization evaluations of CO_(2)-EOR technology.In this paper,a novel optimization workflow that couples the AST-GraphTrans-based proxy model(Attention-based Spatio-temporal Graph Transformer)and multi-objective optimization algorithm MOPSO(Multi-objective Particle Swarm Optimization)is established to optimize CO_(2)-EOR strategies.The workflow consists of two outstanding components.The AST-GraphTrans-based proxy model is utilized to forecast the dynamics of CO_(2) flooding and sequestration,which includes cumulative oil production,CO_(2) sequestration volume,and CO_(2) plume front.And the MOPSO algorithm is employed for achieving maximum oil production and maximum sequestration volume by coordinating well placement and well control parameters with the containment of gas channeling.By the collaborative coordination of the two aforementioned components,the AST-GraphTrans proxy-assisted optimization workflow overcomes the limitations of rapid optimization in CO_(2)-EOR technology,which cannot consider high-dimensional spatio-temporal information.The effectiveness of the proposed workflow is validated on a 2D synthetic model and a 3D field-scale reservoir model.The proposed workflow yields optimizations that lead to a significant increase in cumulative oil production by 87%and 49%,and CO_(2) sequestration volume enhancement by 78%and 50%across various reservoirs.These findings underscore the superior stability and generalization capabilities of the AST-GraphTrans proxy-assisted framework.The contribution of this study is to provide a more efficient prediction and optimization tool that maximizes CO_(2) sequestration and oil recovery while mitigating CO_(2) gas channeling,thereby ensuring cleaner oil production. 展开更多
关键词 Spatio-temporal sequence prediction Multi-objective optimization Enhanced oil recovery CO_(2)sequestration Gas channeling
原文传递
The future of carbon capture:Basalt’s role in low-hydration CO_(2) sequestration
13
作者 Guoyan Li Ranjith P.Gamage Yong Liu 《Geoscience Frontiers》 2025年第4期123-134,共12页
Mitigating climate change demands innovative solutions,and carbon sequestration technologies are at the forefront.Among these,basalt,a mafic volcanic rock packed with calcium,magnesium,and iron,emerges as a powerful c... Mitigating climate change demands innovative solutions,and carbon sequestration technologies are at the forefront.Among these,basalt,a mafic volcanic rock packed with calcium,magnesium,and iron,emerges as a powerful candidate for carbon dioxide(CO_(2))sequestration through mineral carbonation.This method transforms CO_(2)into stable carbonate minerals,ensuring a permanent and environmentally safe storage solution.While extensive research has explored into basalt’s potential under high hydration conditions,the untapped promise of low water content scenarios remains largely unexplored.Our ground-breaking study investigates the mineral carbonation of basalt powder under low water condi-tions using supercritical CO_(2)(sc-CO_(2)).Conducted at 50℃ and 15 MPa with a controlled moisture content of 30%,our experiment spans various time points(0,7,14,21,and 28 days).Utilising advanced X-ray diffraction(XRD)and scanning electron microscopy with energy-dispersive X-ray spectroscopy(SEM-EDS),we unveil the mineralogical and morphological transformations.The results are striking:even under low water conditions,basalt efficiently forms valuable carbonate minerals such as calcite,siderite,magnesite,and ankerite.The carbonation efficiency evolves over time,reflecting the dynamic transfor-mation of the basalt matrix.These findings offer pivotal insights into optimising CO_(2)sequestration in basalt under low hydration,marking a significant leap toward sustainable carbon capture and storage. 展开更多
关键词 Carbon sequestration Basalt mineralisation Supercritical CO_(2) Low-hydration
在线阅读 下载PDF
Global urbanization indirectly‘enhances’the carbon sequestration capacity of urban vegetation
14
作者 Jieming Kang Baolei Zhang +6 位作者 Qian Zhang Chunlin Li Jun Ma Jiabo Yin Kailiang Yu Yuanman Hu Elie Bou-Zeid 《Geography and Sustainability》 2025年第3期240-250,共11页
Urbanization radically alters the climatic environment and landscape patterns of urban areas,but its impact on the carbon sequestration capacity of vegetation remains uncertain.Given the limitations of current small-s... Urbanization radically alters the climatic environment and landscape patterns of urban areas,but its impact on the carbon sequestration capacity of vegetation remains uncertain.Given the limitations of current small-scale ground-based in situ experiments,the response of vegetation carbon sequestration capacity to urbanization and the factors influencing it remain unclear at the global scale.Using multisource remote sensing data,we quanti-fied and differentiated the direct and indirect impacts of urbanization on the carbon sequestration capacity of vegetation in 508 large urban areas globally from 2000 to 2020.The results revealed that the direct impacts of urbanization were generally negative.However,446 cities experienced an indirect enhancement in vegetation carbon sequestration capacity during urbanization,averaging 19.6%globally and offsetting 14.7%of the di-rect loss due to urbanization.These positive indirect effects were most pronounced in environments with limited hydrothermal conditions and increased most in densely populated temperate and cold regions.Furthermore,indi-rect impacts were closely related to urbanization intensity,human footprint,and level of urban development.Our study enhances the understanding of how the carbon sequestration capacity of vegetation dynamically responds to changes in the urban environment,which is crucial for improving future urban vegetation management and building sustainable cities. 展开更多
关键词 Global urbanization Vegetation carbon sequestration capacity Net ecosystem productivity Global change
在线阅读 下载PDF
Quantitative characterization of the multiscale mechanical properties of low‑permeability sandstone roofs of coal seams based on nanoindentation and triaxial tests and its implications for CO_(2) geological sequestration
15
作者 Feng Cao Jianhua He +5 位作者 Hongxiu Cao Hucheng Deng Andrew D.La Croix Rui Jiang Ruixue Li Jiarun Li 《International Journal of Coal Science & Technology》 2025年第1期125-151,共27页
Microstructural heterogeneity of low-permeability sandstone roofs of deep unmineable coal seams due to diagenesis significantly affects rock mechanical behavior,greatly impacting the sealing potential of in situ CO_(2... Microstructural heterogeneity of low-permeability sandstone roofs of deep unmineable coal seams due to diagenesis significantly affects rock mechanical behavior,greatly impacting the sealing potential of in situ CO_(2) sequestration and the structural stability of the geological formation.However,little is known about how the microstructure of different mineral groups influences the multiscale mechanical behavior of deep sandstone.This study proposes a new method for quantitatively characterizing the multiscale mechanical properties of low-permeability sandstone and shows the mechanisms responsible for mechanical failure at the micro-,meso-,and macroscale.Triaxial compression tests and targeted nanoindentation tests were conducted to assess the micro-and macroscale mechanical properties of different types of sandstone.The micro-and macroscale experiments were coupled with numerical simulations of compression using a unified cohesive model based on Voronoi polygons to clarify the multiscale mechanical behavior.The results indicate that quartz,the primary mineral component of the sandstones examined,exhibits the strongest micromechanical properties,followed by feldspar,calcite,and clay minerals.Compared to polycrystalline quartz,monocrystalline quartz has a more stable microstructure and is mechanically stronger.The macro-mechanical properties of tight sandstone samples are weakened by increased microstructural inhomogeneity and larger grain size.This leads to a higher likelihood of splitting damage,characterized by a high degree of discrete and weak stress sensitivity.The major conclusion is that the positive rhythm lithofacies of medium-grained sandstone to siltstone are the most favorable for efficient CO_(2) sequestration in deep unmineable coal seams. 展开更多
关键词 Low-permeability sandstone roofs of coal seams Triaxial test Nanoindentation test Mechanical properties Fracture mechanical behavior CO_(2)sequestration
在线阅读 下载PDF
Green roofs for a greener future: Quantifying carbon sequestration and oxygen production potential in Chinese cities
16
作者 LIN Shaofu HAN Haoyu LIU Xiliang 《Journal of Geographical Sciences》 2025年第10期2091-2112,共22页
Green roofs play a vital role in promoting sustainable urban development and achieving carbon neutrality by enhancing carbon sequestration, oxygen release, and efficiency of land use. Despite these benefits, living ro... Green roofs play a vital role in promoting sustainable urban development and achieving carbon neutrality by enhancing carbon sequestration, oxygen release, and efficiency of land use. Despite these benefits, living roof coverage in China remains limited. To address the challenges in policy formulation, operational monitoring, and the absence of multi-scale retrofit strategies supported by robust assessment methods, this study develops a comprehensive evaluation framework. The framework integrates vector data, building age information, and point-of-interest(POI) data, and applies an optimized Prophet model to classify six major climate zones. This approach facilitates the selection of appropriate plant species and substrates while quantifying the potential for carbon sequestration and oxygen release. An assessment of 90 cities reveals approximately 1.3861 billion square meters of rooftop area suitable for green roof implementation, with an estimated annual carbon sequestration potential of 67.30 million tons and oxygen release of 30.36 million tons. Commercial buildings contribute significantly, comprising 65% of the total suitable area. Climate zones 2 and 3 exhibit the most favorable outcomes. The current study provides a reliable quantitative reference for evaluating the carbon sequestration and oxygen release capacities of green roofs and supports the formulation of effective retrofit policies. 展开更多
关键词 multi-space granularity remote sensing image recognition green roof retrofit carbon sequestration potential oxygen release potential
原文传递
CO_(2) adsorption behaviour on β-C_(2)S(111) and (100) surfaces: Implications for carbon sequestration in cementitious materials
17
作者 Chongchong Qi Zirou Liu +2 位作者 Dino Spagnoli Danial Jahed Armaghani Xinhang Xu 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2109-2118,共10页
Understanding the differences in CO_(2)adsorption in cementitious material is critical in mitigating the carbon footprint of the construction industry.This study chose the most common β-C_(2)S phase in the industry a... Understanding the differences in CO_(2)adsorption in cementitious material is critical in mitigating the carbon footprint of the construction industry.This study chose the most common β-C_(2)S phase in the industry as the cementitious material,selecting the β-C_(2)S(111)and β-C_(2)S(100)surfaces for CO_(2)adsorption.First-principles calculations were employed to systematically compare the CO_(2)ad-sorption behaviors on both surfaces focusing on adsorption energy,adsorption configurations,and surface reconstruction.The comparis-on of CO_(2)and H2O adsorption behaviors on the β-C_(2)S(111)surface was also conducted to shed light on the influence of CO_(2)on cement hydration.The adsorption energies of CO_(2)on the β-C_(2)S(111)and β-C_(2)S(100)surfaces were determined as-0.647 and-0.423 eV,respect-ively,suggesting that CO_(2)adsorption is more energetically favorable on the β-C_(2)S(111)surface than on the β-C_(2)S(100)surface.The ad-sorption energy of H2O on the β-C_(2)S(111)surface was-1.588 eV,which is 0.941 eV more negative than that of CO_(2),implying that β-C_(2)S tends to become hydrated before reacting with CO_(2).Bader charges,charge density differences,and the partial density of states were ap-plied to characterize the electronic properties of CO_(2)and H2O molecules and those of the surface atoms.The initial Ca/O sites on the β-C_(2)S(111)surface exhibited higher chemical reactivity due to the greater change in the average number of valence electrons in the CO_(2)ad-sorption.Specifically,after CO_(2)adsorption,the average number of valence electrons for both the Ca and O atoms increased by 0.002 on the β-C_(2)S(111)surface,while both decreased by 0.001 on the β-C_(2)S(100)surface.In addition,due to the lower valence electron number of O atoms,the chemical reactivity of O atoms on the β-C_(2)S(111)surface after H2O adsorption was higher than the case of CO_(2)adsorption,which favors the occurrence of further reactions.Overall,this work assessed the adsorption capacity of the β-C_(2)S surface for CO_(2)mo-lecules,offering a strong theoretical foundation for the design of novel cementitious materials for CO_(2)capture and storage. 展开更多
关键词 CO_(2)adsorption cementitious materials first-principles calculations carbon sequestration
在线阅读 下载PDF
Insights into the dissolution kinetics of copper-nickel tailings for CO_(2)mineral sequestration
18
作者 Zhenghong Yang Haiyun Gu +3 位作者 Sijia Liu Kai Wu Linglin Xu Lijie Guo 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2119-2130,共12页
Copper-nickel tailings(CNTs),consisting of more than 80wt%magnesium-bearing silicate minerals,show great potential for CO_(2)mineral sequestration.The dissolution kinetics of CNTs in HCl solution was investigated thro... Copper-nickel tailings(CNTs),consisting of more than 80wt%magnesium-bearing silicate minerals,show great potential for CO_(2)mineral sequestration.The dissolution kinetics of CNTs in HCl solution was investigated through a leaching experiment and kinetic modeling,and the effects of reaction time,HCl concentration,solid-to-liquid ratio,and reaction temperature on the leaching rate of mag-nesium were comprehensively studied.Results show that the suitable leaching conditions for magnesium in CNTs are 2 M HCl,a solid-to-liquid ratio of 50 g·L^(−1),and 90℃,at which the maximum leaching rate of magnesium is as high as 83.88%.A modified shrinking core model can well describe the leaching kinetics of magnesium.The dissolution of magnesium was dominated by a combination of chemical reaction and product layer diffusion,with a calculated apparent activation energy of 77.51 kJ·mol^(−1).This study demonstrates the feasibil-ity of using CNTs as a media for CO_(2)mineral sequestration. 展开更多
关键词 copper-nickel tailings dissolution kinetics magnesium leaching shrinking core model CO_(2)mineral sequestration
在线阅读 下载PDF
Mechanism of direct CO_(2) sequestration by alkali metal K-activated steel slag
19
作者 Rong Sun Xu-chao Wang +3 位作者 Wei-cheng Xu Ru-fei Wei Jie Lei Hong-ming Long 《Journal of Iron and Steel Research International》 2025年第6期1540-1554,共15页
CO_(2)sequestration through steel slag is one of the effective approaches to simultaneously realize the resource utilization of industrial solid waste,reduce carbon emissions,and enhance the stability of steel slag as... CO_(2)sequestration through steel slag is one of the effective approaches to simultaneously realize the resource utilization of industrial solid waste,reduce carbon emissions,and enhance the stability of steel slag as a construction base,with considerable application prospects.Nevertheless,the components responsible for CO_(2)sequestration in steel slag predominantly exist as silicates,whose chemical inertness leads to suboptimal CO_(2)sequestration efficiency in the slag.Based on the strategy of activating the silicate components in steel slag with the alkali metal potassium(K)to improve the CO_(2)sequestration performance of steel slag,both experiments and theoretical calculations were performed to give a deep insight into the effect and mechanism of K modification on enhancing the CO_(2)sequestration capability of steel slag.In experiments,CO_(2)sequestration capacity of steel slag modified with 3 wt.%K reached 100.15 g/kg at 1000 K.Theoretical analysis has revealed that although K exhibits low reactivity,it enhances the electronic transition and amplifies charge localization at specific sites within Ca_(2)SiO_(4),consequently improving its CO_(2)sequestration capacity.However,an excessive doping of K led to the partial inactivation of some active sites within Ca_(2)SiO_(4).Furthermore,CO_(2)chemisorption on Ca_(2)SiO_(4)surface predominantly occurs through the chelate configuration of CO_(3)^(2−),suggesting the formation of a CaCO_(3)precursor.Thus,both the experimental results and theoretical calculations reveal the role of K on enhancing CO_(2)sequestration capability of steel slag.In summary,K modification offers promising prospects for improving CO_(2)sequestration properties of steel slag and provides support for the industrial implementation of carbon sequestration by steel slag. 展开更多
关键词 K-modified steel slag CO_(2)sequestration Dicalcium silicate Density functional theory
原文传递
CO_(2) Mineralized Full Solid Waste Cementitious Material for Coal Mine Goaf Filling and Carbon Sequestration Potential Assessment
20
作者 Bo Wang Huaigang Cheng +4 位作者 Xiong Liu Zichen Di Huiping Song Dongke Zhang Fangqin Cheng 《Engineering》 2025年第5期70-80,共11页
Coal is an essential component of global energy;however,the processes of coal mining and utilization produce significant amounts of coal mine goafs,accompanied by coal-based solid wastes and emitted CO_(2),resulting i... Coal is an essential component of global energy;however,the processes of coal mining and utilization produce significant amounts of coal mine goafs,accompanied by coal-based solid wastes and emitted CO_(2),resulting in severe ecological and environmental challenges.In response to this issue,this study pro-poses a novel approach for filling coal mine goafs using cementitious materials prepared by coal-based solid wastes mineralized with CO_(2)(15%in concentration).The CO_(2) sequestration capacities of individual solid wastes are ranked as follows:carbide slag(CS)>red mud(RM)>fly ash(FA).The performance of filling material prepared from composite solid waste(FA-CS-RM)mineralized with CO_(2) meets the filling requirements of goaf.The filling material(F60C20R20)obtained by CO_(2) mineralization was 14.9 MPa in maximum compressive strength,increasing by 32.2%compared to the non-mineralized material.The prepared filling material exhibits excellent CO_(2) sequestration capacity(i.e.,14.4 kg·t^(−1) in maximum amount of CO_(2) sequestration).According to the analysis of carbon sequestration potential,in China,the annual production of FA,CS,and RM is approximately 899,30,and 107 Mt,respectively in the year of 2023.The utilization of FA,CS,and RM individually can achieve carbon emission reductions of 3.42,10.78,and 0.61 Mt,respectively.The composite solid waste(FA-CS-RM)mineralized with CO_(2) can achieve 1.23 Mt in carbon emissions reduction.Additionally,taking Yellow River Basin of China as a case study,the total volume of underground space in coal mine goafs from 2016 to 2030 is estimated at 8.16 Gm3,indicating that this technology can sequester 0.18 Gt of CO_(2).This approach offers a promising solution for large-scale flue gas CO_(2) sequestration,recycling coal-based solid wastes,and remediating coal mine goafs,contributing to green utilization of coal and the emission reduction of carbon. 展开更多
关键词 CO_(2)mineralization Solid waste Coal mine goaf Filling material Carbon sequestration potential assessment
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部