This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
Synthesis of chemical processes is of non-convex and multi-modal. Deterministic strategies often fail to find global optimum within reasonable time scales. Stochastic methodologies generally approach global solution i...Synthesis of chemical processes is of non-convex and multi-modal. Deterministic strategies often fail to find global optimum within reasonable time scales. Stochastic methodologies generally approach global solution in probability. In recogniting the state of art status in the discipline, a new approach for global optimization of processes, based on sequential number theoretic optimization (SNTO), is proposed. In this approach, subspaces and feasible points are derived from uniformly scattered points, and iterations over passing the corner of local optimum are enhanced via parallel strategy. The efficiency of the approach proposed is verified by results obtained from various case studies.展开更多
This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method fo...This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method for the discussed problem is proposed.First,we consider the problem of quadratic optimal(QO)approximation associated with the current feasible iteration point,and we split the QO into two small-scale QOs which can be solved in parallel.Second,a feasible descent direction for the problem is obtained and a new SQO-type method is proposed,namely,splitting feasible SQO(SF-SQO)method.Moreover,under suitable conditions,we analyse the global convergence,strong convergence and rate of superlinear convergence of the SF-SQO method.Finally,preliminary numerical experiments regarding the economic dispatch of a power system are carried out,and these show that the SF-SQO method is promising.展开更多
In the context of reducing its carbon emissions,the Chinese steel industry is currently undergoing an intelligent transformation to enhance its profitability and sustainability.The optimization of production planning ...In the context of reducing its carbon emissions,the Chinese steel industry is currently undergoing an intelligent transformation to enhance its profitability and sustainability.The optimization of production planning and scheduling plays a pivotal role in realizing these objectives such as improving production efficiency,saving energy,reducing carbon emissions,and enhancing quality.However,current practices in steel enterprises are largely dependent on experience-driven manual decision approaches supported by information systems,which are inadequate to meet the complex requirements of the industry.This study explores the current situation in production planning and scheduling,analyzes the characteristics and limitations of existing methods,and emphasizes the necessity and trends of intelligent systems.It surveys the current literature on production planning and scheduling in steel enterprises and analyzes the theoretical advancements and practical challenges associated with combinatorial and sequential optimization in this field.A key focus is on the limitations of current models and algorithms in effectively addressing the multi-objective and multiconstraint characteristics of steel produc-tion.To overcome these challenges,a novel framework for intelligent production planning and scheduling is proposed.This framework leverages data-and knowledge-driven decision-making and scenario adaptability,enabling the system to respond dynamically to real-time production conditions and market fluctuations.By integrating artificial intelligence and advanced optimization methodologies,the proposed framework improves the efficiency,cost-effectiveness,and environmental sustainability of steel manufacturing.展开更多
This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimizat...This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimization method is applied to the reliability-based design of composites. In the sequential single-loop optimization, the optimization and the reliability analysis are decoupled to improve the computational efficiency. As shown in examples, the minimum weight problems under the constraint of structural reliability are solved for laminated composites. The Particle Swarm Optimization (PSO) algorithm is utilized to search for the optimal solutions. The design results indicate that, under the mixture of random and interval variables, the method that combines the sequential single-loop optimization and the PSO algorithm can deal effectively with the reliability-based design of composites.展开更多
In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MED...In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MEDO,and achieves the automatic adjustment of the parameters.The proposed method is named as adaptive Maxwell’s equations derived optimization(AMEDO).In order to evaluate the performance of AMEDO,eight benchmarks are used and the results are compared with the original MEDO method.The results show that AMEDO can greatly reduce the workload of manual adjustment of parameters,and at the same time can keep the accuracy and stability.Moreover,the convergence of the optimization can be accelerated due to the dynamical adjustment of the parameters.In the end,the proposed AMEDO is applied to the side lobe level suppression and array failure correction of a linear antenna array,and shows great potential in antenna array synthesis.展开更多
Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques....Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques. But the randomicity of parameter selection in its implement often prevents it achieving expected performance. By utilizing genetic algorithm (GA) to optimize the parameters in data preprocessing and the training model of SVM simultaneously, a hybrid optimization algorithm is proposed in the paper to address this problem. The experimental results demonstrate that it’s an effective method and can improve the performance of SVM-based intrusion detection system further.展开更多
It is proposed that double level programming technique may be adopted in synthesis strategy. Optimization of heat exchanger network structural configuration (the master problem) may be solved at the upper level, leavi...It is proposed that double level programming technique may be adopted in synthesis strategy. Optimization of heat exchanger network structural configuration (the master problem) may be solved at the upper level, leaving the rest operating conditions( the slave problem) being optimized at the lower level. With the uniqueness in mind, an HEN synthesis expert system may be employed to address both the logical constraints and the global operation parameters′ optimization using enhanced sequential number optimization theory.Case studies demonstrate that the synthesis strategy proposed can effectively simplify both the problem solving and the synthesis process. The validity of the strategy recommended is evidenced by case studies′ results compared.展开更多
The quantitative rules of the transfer and variation of errors,when the Gaussian integral functions F.(z) are evaluated sequentially by recurring,have been expounded.The traditional viewpoint to negate the applicabili...The quantitative rules of the transfer and variation of errors,when the Gaussian integral functions F.(z) are evaluated sequentially by recurring,have been expounded.The traditional viewpoint to negate the applicability and reliability of upward recursive formula in principle is amended.An optimal scheme of upward-and downward-joint recursions has been developed for the sequential F(z) computations.No additional accuracy is needed with the fundamental term of recursion because the absolute error of Fn(z) always decreases with the recursive approach.The scheme can be employed in modifying any of existent subprograms for Fn<z> computations.In the case of p-d-f-and g-type Gaussians,combining this method with Schaad's formulas can reduce,at least,the additive operations by a factor 40%;the multiplicative and exponential operations by a factor 60%.展开更多
Time-dependent reliability-based design optimization(TRBDO)has received extensive attention because of its ability to achieve optimal solutions that help meet the requirement for whole lifecycle reliability by quantit...Time-dependent reliability-based design optimization(TRBDO)has received extensive attention because of its ability to achieve optimal solutions that help meet the requirement for whole lifecycle reliability by quantitatively considering dynamic uncertainties.However,directly solving TRBDO problems is computationally expensive,if not prohibitive,owing to the need to repeatedly evaluate time-dependent probabilistic constraints.To address this challenge,an efficient decoupled method called sequential optimization and time-dependent reliability assessment(SOTRA)is proposed in this study.This method transforms the original TRBDO problem,initially formulated probabilistically,into a problem using percentile formulation after discretizing time-dependent performance functions.By adopting the equivalent minimum performance target point(EMPTP)concept,the TRBDO problem is further converted into an equivalent deterministic optimization problem,which is subsequently solved through a sequential iteration process involving deterministic optimization and time-dependent reliability analysis.To efficiently and robustly search an EMPTP for reliability analysis,a time-dependent self-adaptive finite-step length method is developed.To verify the proposed SOTRA method against existing TRBDO methods,a numerical example,a benchmark structural design case of a simply supported beam,and an engineering application for flexible wheel design are exemplified in this study.The results demonstrate that the proposed SOTRA method exhibits high efficiency and robustness in solving TRBDO problems.展开更多
In recent years,reinforcement learning(RL)has emerged as a solution for model-free dynamic programming problem that cannot be effectively solved by traditional optimization methods.It has gradually been applied in the...In recent years,reinforcement learning(RL)has emerged as a solution for model-free dynamic programming problem that cannot be effectively solved by traditional optimization methods.It has gradually been applied in the fields such as economic dispatch of power systems due to its strong selflearning and self-optimizing capabilities.However,existing economic scheduling methods based on RL ignore security risks that the agent may bring during exploration,which poses a risk of issuing instructions that threaten the safe operation of power system.Therefore,we propose an improved proximal policy optimization algorithm for sequential security-constrained optimal power flow(SCOPF)based on expert knowledge and safety layer to determine active power dispatch strategy,voltage optimization scheme of the units,and charging/discharging dispatch of energy storage systems.The expert experience is introduced to improve the ability to enforce constraints such as power balance in training process while guiding agent to effectively improve the utilization rate of renewable energy.Additionally,to avoid line overload,we add a safety layer at the end of the policy network by introducing transmission constraints to avoid dangerous actions and tackle sequential SCOPF problem.Simulation results on an improved IEEE 118-bus system verify the effectiveness of the proposed algorithm.展开更多
The time-scaling transformation is a widely used approach within the computational framework of control parameterization for optimizing the switching times of control variables.However,the conventional time-scaling tr...The time-scaling transformation is a widely used approach within the computational framework of control parameterization for optimizing the switching times of control variables.However,the conventional time-scaling transformation has the limitation that the switching times and the number of switches for each control component must be the same.In this paper,we present a novel technique to solve constrained optimal control problems that allows for adaptively optimizing the switching times for each control component.Numerical results demonstrate that this proposed method provides better flexibility in control strategy and yields improved performance.展开更多
An improved linear-time retiming algorithm is proposed to incrementally optimize the clock period, espe cially considering the influence of the in-out degree of the critical combinational elements. Firslly, the critic...An improved linear-time retiming algorithm is proposed to incrementally optimize the clock period, espe cially considering the influence of the in-out degree of the critical combinational elements. Firslly, the critical elements are selected from all the critical combinational elements to retime. Secondly, for the nodes that cannot be performed with such retiming, register sharing is implemented while the path delay is kept unchanged. The incremental algorithm can be applied with the technology mapping to minimize the critical path delay and obtain fewer registers in the re- timed circuit with the near-optimal clock period. Compared with Singh's incremental algorithm, experiments show that the proposed algorithm can reduce the flip-flop count by 11% and look-up table (LUT) count by 5% while improv- ing the minimum clock period by 6%. The runtime is also reduced by 9% of the design flow.展开更多
Support vector machines (SVMs) are initially designed for binary classification. How to effectively extend them for multiclass classification is still an ongoing research topic. A multiclass classifier is constructe...Support vector machines (SVMs) are initially designed for binary classification. How to effectively extend them for multiclass classification is still an ongoing research topic. A multiclass classifier is constructed by combining SVM^light algorithm with directed acyclic graph SVM (DAGSVM) method, named DAGSVM^light A new method is proposed to select the working set which is identical to the working set selected by SVM^light approach. Experimental results indicate DAGSVM^light is competitive with DAGSMO. It is more suitable for practice use. It may be an especially useful tool for large-scale multiclass classification problems and lead to more widespread use of SVMs in the engineering community due to its good performance.展开更多
To avoid the numerical complexities of the battery discharge law of electric-powered rotorcrafts,this study uses the Kriging method to model the discharge characteristics of Li-Po batteries under standard conditions.A...To avoid the numerical complexities of the battery discharge law of electric-powered rotorcrafts,this study uses the Kriging method to model the discharge characteristics of Li-Po batteries under standard conditions.A linear current compensation term and an ambient temperature compensation term based on radial basis functions are then applied to the trained Kriging model,leading to the complete discharged capacity-terminal voltage model.Using an orthogonal experimental design and a sequential method,the coefficients of the current and ambient temperature compensation terms are determined through robust optimization.An endurance calculation model for electric-powered rotorcrafts is then established,based on the battery discharge model,through numerical integration.Laboratory tests show that the maximum relative error of the proposed discharged capacity-terminal voltage model at detection points is 0.0086,and that of the rotorcraft endurance calculation model is 0.0195,thus verifying their accuracy.A flight test further demonstrates the applicability of the proposed endurance model to general electric-powered rotorcrafts.展开更多
An on-line forecasting model based on self-tuning support vectors regression for zinc output was put forward to maximize zinc output by adjusting operational parameters in the process of imperial smelting furnace. In ...An on-line forecasting model based on self-tuning support vectors regression for zinc output was put forward to maximize zinc output by adjusting operational parameters in the process of imperial smelting furnace. In this model, the mathematical model of support vector regression was converted into the same format as support vector machine for classification. Then a simplified sequential minimal optimization for classification was applied to train the regression coefficient vector α- α* and threshold b. Sequentially penalty parameter C was tuned dynamically through forecasting result during the training process. Finally, an on-line forecasting algorithm for zinc output was proposed. The simulation result shows that in spite of a relatively small industrial data set, the effective error is less than 10% with a remarkable performance of real time. The model was applied to the optimization operation and fault diagnosis system for imperial smelting furnace.展开更多
In this paper,we present a novel nonparallel support vector machine based on one optimization problem(NSVMOOP)for binary classification.Our NSVMOOP is formulated aiming to separate classes from the largest possible an...In this paper,we present a novel nonparallel support vector machine based on one optimization problem(NSVMOOP)for binary classification.Our NSVMOOP is formulated aiming to separate classes from the largest possible angle between the normal vectors and the decision hyperplanes in the feature space,at the same time implementing the structural risk minimization principle.Different from other nonparallel classifiers,such as the representative twin support vector machine,it constructs two nonparallel hyperplanes simultaneously by solving a single quadratic programming problem,on which a modified sequential minimization optimization algorithm is explored.The NSVMOOP is analyzed theoretically and implemented experimentally.Experimental results on both artificial and publicly available benchmark datasets show its feasibility and effectiveness.展开更多
MicroRNA (miRNA) plays vital roles in biological processes like RNA splicing and regulation of gene expression. Studies have revealed that there might be possible links between onco- genesis and expression profiles ...MicroRNA (miRNA) plays vital roles in biological processes like RNA splicing and regulation of gene expression. Studies have revealed that there might be possible links between onco- genesis and expression profiles of some miRNAs, due to their differential expression between normal and tumor tissues. However, the automatic classification of miRNAs into different cate- gories by considering the similarity of their expression values has rarely been addressed. This article proposes a solution framework for solving some real-life classification problems related to cancer, miRNA, and mRNA expression datasets. In the first stage, a mulfiobjective optimization based framework, non-dominated sorting genetic algorithm II, is proposed to automatically determine the appropriate classifier type, along with its suitable parameter and feature combinations, pertinent for classifying a given dataset. In the second page, a stack-based ensemble technique is employed to get a single combinatorial solution from the set of solutions obtained in tke first stage. The performance of the proposed two-stage approach is evaluated on several cancer and RNA expression pro- file datasets. Compared to several state-of-the-art approaches for classifying different datasets, our method shows supremacy in the accuracy of classification.展开更多
Standard support vector machines (SVMs) train- ing algorithms have O(l3) computational and O(l2) space complexities, where l is the training set size. It is thus com- /putationally infeasible on very large data ...Standard support vector machines (SVMs) train- ing algorithms have O(l3) computational and O(l2) space complexities, where l is the training set size. It is thus com- /putationally infeasible on very large data sets.To alleviate the Computational burden in SVM training, we propose an algo- rithm to train SVMs on a bound vectors set that is extracted based on Fisher projection. For linear separate problems, we use linear Fisher discriminant to compute the projection line, while for non-linear separate problems, we use kernel Fisher discriminant to compute the projection line. For each case, we select a certain ratio samples whose projections are adja- cent to those of the other class as bound vectors. Theoretical analysis shows that the proposed algorithm is with low com- putational and space complexities.Extensive experiments on several classification benchmarks demonstrate the effective- ness of our approach.展开更多
To facilitate the application of support vector machines (SVMs) in embedded systems,we propose and test a parallel and scalable digital architecture based on the sequential minimal optimization (SMO) algorithm for tra...To facilitate the application of support vector machines (SVMs) in embedded systems,we propose and test a parallel and scalable digital architecture based on the sequential minimal optimization (SMO) algorithm for training SVMs.By taking advantage of the mature and popular SMO algorithm,the numerical instability issues that may exist in traditional numerical algorithms are avoided.The error cache updating task,which dominates the computation time of the algorithm,is mapped into multiple processing units working in parallel.Experiment results show that using the proposed architecture,SVM training problems can be solved effectively with inexpensive fixed-point arithmetic and good scalability can be achieved.This architecture overcomes the drawbacks of the previously proposed SVM hardware that lacks the necessary flexibility for embedded applications,and thus is more suitable for embedded use,where scalability is an important concern.展开更多
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
文摘Synthesis of chemical processes is of non-convex and multi-modal. Deterministic strategies often fail to find global optimum within reasonable time scales. Stochastic methodologies generally approach global solution in probability. In recogniting the state of art status in the discipline, a new approach for global optimization of processes, based on sequential number theoretic optimization (SNTO), is proposed. In this approach, subspaces and feasible points are derived from uniformly scattered points, and iterations over passing the corner of local optimum are enhanced via parallel strategy. The efficiency of the approach proposed is verified by results obtained from various case studies.
基金supported by the National Natural Science Foundation of China(12171106)the Natural Science Foundation of Guangxi Province(2020GXNSFDA238017 and 2018GXNSFFA281007)the Shanghai Sailing Program(21YF1430300)。
文摘This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method for the discussed problem is proposed.First,we consider the problem of quadratic optimal(QO)approximation associated with the current feasible iteration point,and we split the QO into two small-scale QOs which can be solved in parallel.Second,a feasible descent direction for the problem is obtained and a new SQO-type method is proposed,namely,splitting feasible SQO(SF-SQO)method.Moreover,under suitable conditions,we analyse the global convergence,strong convergence and rate of superlinear convergence of the SF-SQO method.Finally,preliminary numerical experiments regarding the economic dispatch of a power system are carried out,and these show that the SF-SQO method is promising.
基金supported by the Key Program of the National Natural Science Foundation of China(Nos.52334008 and 51734004).
文摘In the context of reducing its carbon emissions,the Chinese steel industry is currently undergoing an intelligent transformation to enhance its profitability and sustainability.The optimization of production planning and scheduling plays a pivotal role in realizing these objectives such as improving production efficiency,saving energy,reducing carbon emissions,and enhancing quality.However,current practices in steel enterprises are largely dependent on experience-driven manual decision approaches supported by information systems,which are inadequate to meet the complex requirements of the industry.This study explores the current situation in production planning and scheduling,analyzes the characteristics and limitations of existing methods,and emphasizes the necessity and trends of intelligent systems.It surveys the current literature on production planning and scheduling in steel enterprises and analyzes the theoretical advancements and practical challenges associated with combinatorial and sequential optimization in this field.A key focus is on the limitations of current models and algorithms in effectively addressing the multi-objective and multiconstraint characteristics of steel produc-tion.To overcome these challenges,a novel framework for intelligent production planning and scheduling is proposed.This framework leverages data-and knowledge-driven decision-making and scenario adaptability,enabling the system to respond dynamically to real-time production conditions and market fluctuations.By integrating artificial intelligence and advanced optimization methodologies,the proposed framework improves the efficiency,cost-effectiveness,and environmental sustainability of steel manufacturing.
基金the National Natural Science Foundation of China(No.10772070)Ph.D Programs Foundation of Ministry of Education of China(No.20070487064).
文摘This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimization method is applied to the reliability-based design of composites. In the sequential single-loop optimization, the optimization and the reliability analysis are decoupled to improve the computational efficiency. As shown in examples, the minimum weight problems under the constraint of structural reliability are solved for laminated composites. The Particle Swarm Optimization (PSO) algorithm is utilized to search for the optimal solutions. The design results indicate that, under the mixture of random and interval variables, the method that combines the sequential single-loop optimization and the PSO algorithm can deal effectively with the reliability-based design of composites.
基金the National Nature Science Foundation of China(No.61427803).
文摘In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MEDO,and achieves the automatic adjustment of the parameters.The proposed method is named as adaptive Maxwell’s equations derived optimization(AMEDO).In order to evaluate the performance of AMEDO,eight benchmarks are used and the results are compared with the original MEDO method.The results show that AMEDO can greatly reduce the workload of manual adjustment of parameters,and at the same time can keep the accuracy and stability.Moreover,the convergence of the optimization can be accelerated due to the dynamical adjustment of the parameters.In the end,the proposed AMEDO is applied to the side lobe level suppression and array failure correction of a linear antenna array,and shows great potential in antenna array synthesis.
基金This work was supported by the Research Grant of SEC E-Institute :Shanghai High Institution Grid and the Science Foundation ofShanghai Municipal Commission of Science and Technology No.00JC14052
文摘Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques. But the randomicity of parameter selection in its implement often prevents it achieving expected performance. By utilizing genetic algorithm (GA) to optimize the parameters in data preprocessing and the training model of SVM simultaneously, a hybrid optimization algorithm is proposed in the paper to address this problem. The experimental results demonstrate that it’s an effective method and can improve the performance of SVM-based intrusion detection system further.
文摘It is proposed that double level programming technique may be adopted in synthesis strategy. Optimization of heat exchanger network structural configuration (the master problem) may be solved at the upper level, leaving the rest operating conditions( the slave problem) being optimized at the lower level. With the uniqueness in mind, an HEN synthesis expert system may be employed to address both the logical constraints and the global operation parameters′ optimization using enhanced sequential number optimization theory.Case studies demonstrate that the synthesis strategy proposed can effectively simplify both the problem solving and the synthesis process. The validity of the strategy recommended is evidenced by case studies′ results compared.
文摘The quantitative rules of the transfer and variation of errors,when the Gaussian integral functions F.(z) are evaluated sequentially by recurring,have been expounded.The traditional viewpoint to negate the applicability and reliability of upward recursive formula in principle is amended.An optimal scheme of upward-and downward-joint recursions has been developed for the sequential F(z) computations.No additional accuracy is needed with the fundamental term of recursion because the absolute error of Fn(z) always decreases with the recursive approach.The scheme can be employed in modifying any of existent subprograms for Fn<z> computations.In the case of p-d-f-and g-type Gaussians,combining this method with Schaad's formulas can reduce,at least,the additive operations by a factor 40%;the multiplicative and exponential operations by a factor 60%.
基金supported by the National Science Foundation for Excellent Young Scholars(Grant No.52422507)the National Natural Science Foundation of China(Grant Nos.52305256,52275244)+1 种基金Postdoctoral Fellowship Program of CPSF(Grant No.GZC20230661)China Postdoctoral Science Foundation(Grant Nos.2024T170211,2023M740970)。
文摘Time-dependent reliability-based design optimization(TRBDO)has received extensive attention because of its ability to achieve optimal solutions that help meet the requirement for whole lifecycle reliability by quantitatively considering dynamic uncertainties.However,directly solving TRBDO problems is computationally expensive,if not prohibitive,owing to the need to repeatedly evaluate time-dependent probabilistic constraints.To address this challenge,an efficient decoupled method called sequential optimization and time-dependent reliability assessment(SOTRA)is proposed in this study.This method transforms the original TRBDO problem,initially formulated probabilistically,into a problem using percentile formulation after discretizing time-dependent performance functions.By adopting the equivalent minimum performance target point(EMPTP)concept,the TRBDO problem is further converted into an equivalent deterministic optimization problem,which is subsequently solved through a sequential iteration process involving deterministic optimization and time-dependent reliability analysis.To efficiently and robustly search an EMPTP for reliability analysis,a time-dependent self-adaptive finite-step length method is developed.To verify the proposed SOTRA method against existing TRBDO methods,a numerical example,a benchmark structural design case of a simply supported beam,and an engineering application for flexible wheel design are exemplified in this study.The results demonstrate that the proposed SOTRA method exhibits high efficiency and robustness in solving TRBDO problems.
基金supported in part by National Natural Science Foundation of China(No.52077076)in part by the National Key R&D Plan(No.2021YFB2601502)。
文摘In recent years,reinforcement learning(RL)has emerged as a solution for model-free dynamic programming problem that cannot be effectively solved by traditional optimization methods.It has gradually been applied in the fields such as economic dispatch of power systems due to its strong selflearning and self-optimizing capabilities.However,existing economic scheduling methods based on RL ignore security risks that the agent may bring during exploration,which poses a risk of issuing instructions that threaten the safe operation of power system.Therefore,we propose an improved proximal policy optimization algorithm for sequential security-constrained optimal power flow(SCOPF)based on expert knowledge and safety layer to determine active power dispatch strategy,voltage optimization scheme of the units,and charging/discharging dispatch of energy storage systems.The expert experience is introduced to improve the ability to enforce constraints such as power balance in training process while guiding agent to effectively improve the utilization rate of renewable energy.Additionally,to avoid line overload,we add a safety layer at the end of the policy network by introducing transmission constraints to avoid dangerous actions and tackle sequential SCOPF problem.Simulation results on an improved IEEE 118-bus system verify the effectiveness of the proposed algorithm.
基金Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice(No.22DZ2229014)Science and Technology Commission of Shanghai Municipality(No.20JC1413900).
文摘The time-scaling transformation is a widely used approach within the computational framework of control parameterization for optimizing the switching times of control variables.However,the conventional time-scaling transformation has the limitation that the switching times and the number of switches for each control component must be the same.In this paper,we present a novel technique to solve constrained optimal control problems that allows for adaptively optimizing the switching times for each control component.Numerical results demonstrate that this proposed method provides better flexibility in control strategy and yields improved performance.
基金Supported by Major National Scientific Research Plan (No. 2011CB933202)
文摘An improved linear-time retiming algorithm is proposed to incrementally optimize the clock period, espe cially considering the influence of the in-out degree of the critical combinational elements. Firslly, the critical elements are selected from all the critical combinational elements to retime. Secondly, for the nodes that cannot be performed with such retiming, register sharing is implemented while the path delay is kept unchanged. The incremental algorithm can be applied with the technology mapping to minimize the critical path delay and obtain fewer registers in the re- timed circuit with the near-optimal clock period. Compared with Singh's incremental algorithm, experiments show that the proposed algorithm can reduce the flip-flop count by 11% and look-up table (LUT) count by 5% while improv- ing the minimum clock period by 6%. The runtime is also reduced by 9% of the design flow.
文摘Support vector machines (SVMs) are initially designed for binary classification. How to effectively extend them for multiclass classification is still an ongoing research topic. A multiclass classifier is constructed by combining SVM^light algorithm with directed acyclic graph SVM (DAGSVM) method, named DAGSVM^light A new method is proposed to select the working set which is identical to the working set selected by SVM^light approach. Experimental results indicate DAGSVM^light is competitive with DAGSMO. It is more suitable for practice use. It may be an especially useful tool for large-scale multiclass classification problems and lead to more widespread use of SVMs in the engineering community due to its good performance.
文摘To avoid the numerical complexities of the battery discharge law of electric-powered rotorcrafts,this study uses the Kriging method to model the discharge characteristics of Li-Po batteries under standard conditions.A linear current compensation term and an ambient temperature compensation term based on radial basis functions are then applied to the trained Kriging model,leading to the complete discharged capacity-terminal voltage model.Using an orthogonal experimental design and a sequential method,the coefficients of the current and ambient temperature compensation terms are determined through robust optimization.An endurance calculation model for electric-powered rotorcrafts is then established,based on the battery discharge model,through numerical integration.Laboratory tests show that the maximum relative error of the proposed discharged capacity-terminal voltage model at detection points is 0.0086,and that of the rotorcraft endurance calculation model is 0.0195,thus verifying their accuracy.A flight test further demonstrates the applicability of the proposed endurance model to general electric-powered rotorcrafts.
文摘An on-line forecasting model based on self-tuning support vectors regression for zinc output was put forward to maximize zinc output by adjusting operational parameters in the process of imperial smelting furnace. In this model, the mathematical model of support vector regression was converted into the same format as support vector machine for classification. Then a simplified sequential minimal optimization for classification was applied to train the regression coefficient vector α- α* and threshold b. Sequentially penalty parameter C was tuned dynamically through forecasting result during the training process. Finally, an on-line forecasting algorithm for zinc output was proposed. The simulation result shows that in spite of a relatively small industrial data set, the effective error is less than 10% with a remarkable performance of real time. The model was applied to the optimization operation and fault diagnosis system for imperial smelting furnace.
基金supported by the National Natural Science Foundation of China(Nos.61472390,11271361,71331005)Major International(Regional)Joint Research Project(No.71110107026)the Ministry of Water Resources Special Funds for Scientific Research on Public Causes(No.201301094).
文摘In this paper,we present a novel nonparallel support vector machine based on one optimization problem(NSVMOOP)for binary classification.Our NSVMOOP is formulated aiming to separate classes from the largest possible angle between the normal vectors and the decision hyperplanes in the feature space,at the same time implementing the structural risk minimization principle.Different from other nonparallel classifiers,such as the representative twin support vector machine,it constructs two nonparallel hyperplanes simultaneously by solving a single quadratic programming problem,on which a modified sequential minimization optimization algorithm is explored.The NSVMOOP is analyzed theoretically and implemented experimentally.Experimental results on both artificial and publicly available benchmark datasets show its feasibility and effectiveness.
文摘MicroRNA (miRNA) plays vital roles in biological processes like RNA splicing and regulation of gene expression. Studies have revealed that there might be possible links between onco- genesis and expression profiles of some miRNAs, due to their differential expression between normal and tumor tissues. However, the automatic classification of miRNAs into different cate- gories by considering the similarity of their expression values has rarely been addressed. This article proposes a solution framework for solving some real-life classification problems related to cancer, miRNA, and mRNA expression datasets. In the first stage, a mulfiobjective optimization based framework, non-dominated sorting genetic algorithm II, is proposed to automatically determine the appropriate classifier type, along with its suitable parameter and feature combinations, pertinent for classifying a given dataset. In the second page, a stack-based ensemble technique is employed to get a single combinatorial solution from the set of solutions obtained in tke first stage. The performance of the proposed two-stage approach is evaluated on several cancer and RNA expression pro- file datasets. Compared to several state-of-the-art approaches for classifying different datasets, our method shows supremacy in the accuracy of classification.
基金This work was sponsored by the National Natural Sci- ence Foundation of China (Grant Nos. 61370083, 61073043, 61073041 and 61370086), the National Research Foundation for the Doctoral Program of Higher Education of China (20112304110011 and 20122304110012), the Natural Science Foundation of Heilongjiang Province (F200901), and the Harbin Outstanding Academic Leader Foundation of Heilongjiang Province of China (2011RFXXG015).
文摘Standard support vector machines (SVMs) train- ing algorithms have O(l3) computational and O(l2) space complexities, where l is the training set size. It is thus com- /putationally infeasible on very large data sets.To alleviate the Computational burden in SVM training, we propose an algo- rithm to train SVMs on a bound vectors set that is extracted based on Fisher projection. For linear separate problems, we use linear Fisher discriminant to compute the projection line, while for non-linear separate problems, we use kernel Fisher discriminant to compute the projection line. For each case, we select a certain ratio samples whose projections are adja- cent to those of the other class as bound vectors. Theoretical analysis shows that the proposed algorithm is with low com- putational and space complexities.Extensive experiments on several classification benchmarks demonstrate the effective- ness of our approach.
基金Project (No.60720106003) supported by the National Natural Science Foundation of China
文摘To facilitate the application of support vector machines (SVMs) in embedded systems,we propose and test a parallel and scalable digital architecture based on the sequential minimal optimization (SMO) algorithm for training SVMs.By taking advantage of the mature and popular SMO algorithm,the numerical instability issues that may exist in traditional numerical algorithms are avoided.The error cache updating task,which dominates the computation time of the algorithm,is mapped into multiple processing units working in parallel.Experiment results show that using the proposed architecture,SVM training problems can be solved effectively with inexpensive fixed-point arithmetic and good scalability can be achieved.This architecture overcomes the drawbacks of the previously proposed SVM hardware that lacks the necessary flexibility for embedded applications,and thus is more suitable for embedded use,where scalability is an important concern.