Hollow multi-shelled structure(HoMS)is the novel multifunctional structural system,which are con-structed with nanoparticles as structural units,featuring two or more shells,multiple interfaces,and numerous chan-nels ...Hollow multi-shelled structure(HoMS)is the novel multifunctional structural system,which are con-structed with nanoparticles as structural units,featuring two or more shells,multiple interfaces,and numerous chan-nels and demonstrating outstanding properties in energy conversion and mass transfer.In recent years,owing to the breakthroughs in synthetic methods,the diversity of composition and structure of HoMS has been greatly enriched,showing broad application prospects in energy,catalysis,environment and other fields.This review focuses on the research status of HoMS for catalytic applications.Firstly,the new synthesis method for HoMS,namely the sequen-tial templating approach,is introduced from both practical and theoretical perspectives.Then,it summarizes and discusses the structure-performance relationship between the shell structure and catalytic performance.The unique temporal-spatial ordering property of mass transport in HoMS and the major breakthroughs it brings in catalytic applications are discussed.Finally,it looks forward to the opportunities and challenges in the development of HoMS.展开更多
Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,convention...Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process.展开更多
In his authoritative and brilliant account of Pragmatics,Levinson(1983)included Conversation Analysis(CA)firmly as part of Pragmatics.Others have perhaps been more cautious,even sceptical,about whether CA is really re...In his authoritative and brilliant account of Pragmatics,Levinson(1983)included Conversation Analysis(CA)firmly as part of Pragmatics.Others have perhaps been more cautious,even sceptical,about whether CA is really relevant to the Pragmatics programme;and it has to be said that some conversation analysts have been rather stand-offish about being associated with Pragmatics,regarding CA’s programme as very different from that of Pragmatics.Whilst there are many differences and divergences between CA and Pragmatics,my own view is that CA shares with Pragmatics a number of focal interests that lie at or close to the heart of each.So I will explore some connections between them,focusing on the contributions CA makes to our understanding of the pragmatics of language use,especially in three of the foundational areas of Pragmatics—namely Implicature(e.g.from Grice 1975),Speech Acts(social action)(e.g.from Austin 1962 and Searle 1969)and Presupposition and Well-Formedness(e.g.from Lakoff1971).I will show examples that demonstrate the distinctiveness of CA’s approach to these core pragmatic aspects of language use—in the spirit of demonstrating how CA’s approach complements and does not detract from approaches in Pragmatics.展开更多
Hollow multishelled structure(HoMs)has drawn tremendous attention due to its abundant attractive properties and promising applications.However,for a long time,the limited synthesis method hindered the development of H...Hollow multishelled structure(HoMs)has drawn tremendous attention due to its abundant attractive properties and promising applications.However,for a long time,the limited synthesis method hindered the development of HoMs.The sequential templating approach developed by our group,has greatly enriched its composition and'structure diversity.The progress in HoMS synthesis promotes the discovery of its characteristics as well as widens its application area.Typicall,the recently explored temporal-spatial ordering characteristic of HoMS has shown great promise in drug delivery and cascade catalysis application areas.Here,we summarize the current development progress of HoMS in the aspects of both synthesis and application,with a focus discussion on how to shape its application performance by manipulating its composition and structure features.In addition,we discuss the current challenges and providethe future potentials holdingfor HoMs.展开更多
Hollow multishelled structure(HoMS)is one of the most promising multifunctional structures.The high complexity of its structure makes the general and controllable synthesis of HoMS rather challenging.By integration of...Hollow multishelled structure(HoMS)is one of the most promising multifunctional structures.The high complexity of its structure makes the general and controllable synthesis of HoMS rather challenging.By integration of multidisciplinary knowledge,a great achievement in HoMSs has been obtained in the past decade.Especially,the developed sequential templating approach has significantly boomed the progress of HoMS in composition and structure diversity and application area.The implementation of the temporal-spatial ordering in HoMS makes it indispensable in solving the key scientific problems in energy conversion,catalysis and drug delivery areas.Further development in HoMSs with novel intricate structures will bring new understandings.In this review,we systematically introduce the development history of HoMSs,summarize the inspiration inherited from the previous research on hollow structures,and discuss the milestones in the development of HoMSs,with a focus on the sequential templating approach for HoMS fabrication,attractive temporal-spatial ordering property and dynamic smart behavior for advanced applications.We hope to reveal the inherent relationship between the precise synthesis of HoMS and its highly tunable compositional and structural characteristics,and point out its future direction to boost HoMS area further.展开更多
This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the e...This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency, using the coordinated action of fast and slow reserves, for secure operation with minimum overall cost. It considers the reserves supplied by the conventional thermal generators (spinning reserves), hydro power units and load demands (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The proposed reserve activation approaches are solved using the genetic algorithm, and some of the simulation results are also compared using the Matlab optimization toolbox and the general algebraic modeling system (GAMS) software. The simulation studies are performed on the IEEE 30, 57 and 300 bus test systems. These results demonstrate the advantage of the proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.展开更多
文摘Hollow multi-shelled structure(HoMS)is the novel multifunctional structural system,which are con-structed with nanoparticles as structural units,featuring two or more shells,multiple interfaces,and numerous chan-nels and demonstrating outstanding properties in energy conversion and mass transfer.In recent years,owing to the breakthroughs in synthetic methods,the diversity of composition and structure of HoMS has been greatly enriched,showing broad application prospects in energy,catalysis,environment and other fields.This review focuses on the research status of HoMS for catalytic applications.Firstly,the new synthesis method for HoMS,namely the sequen-tial templating approach,is introduced from both practical and theoretical perspectives.Then,it summarizes and discusses the structure-performance relationship between the shell structure and catalytic performance.The unique temporal-spatial ordering property of mass transport in HoMS and the major breakthroughs it brings in catalytic applications are discussed.Finally,it looks forward to the opportunities and challenges in the development of HoMS.
基金supported by the National Key Research and Development Program of China(2022YFB3305900)the National Natural Science Foundation of China(Key Program)(62136003)+2 种基金the National Natural Science Foundation of China(62394345)the Major Science and Technology Projects of Longmen Laboratory(LMZDXM202206)the Fundamental Research Funds for the Central Universities.
文摘Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process.
文摘In his authoritative and brilliant account of Pragmatics,Levinson(1983)included Conversation Analysis(CA)firmly as part of Pragmatics.Others have perhaps been more cautious,even sceptical,about whether CA is really relevant to the Pragmatics programme;and it has to be said that some conversation analysts have been rather stand-offish about being associated with Pragmatics,regarding CA’s programme as very different from that of Pragmatics.Whilst there are many differences and divergences between CA and Pragmatics,my own view is that CA shares with Pragmatics a number of focal interests that lie at or close to the heart of each.So I will explore some connections between them,focusing on the contributions CA makes to our understanding of the pragmatics of language use,especially in three of the foundational areas of Pragmatics—namely Implicature(e.g.from Grice 1975),Speech Acts(social action)(e.g.from Austin 1962 and Searle 1969)and Presupposition and Well-Formedness(e.g.from Lakoff1971).I will show examples that demonstrate the distinctiveness of CA’s approach to these core pragmatic aspects of language use—in the spirit of demonstrating how CA’s approach complements and does not detract from approaches in Pragmatics.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.21820102002,21931012,22111530178 and 51972305)the DNLCooperation Fund,CAS(DNL202020).
文摘Hollow multishelled structure(HoMs)has drawn tremendous attention due to its abundant attractive properties and promising applications.However,for a long time,the limited synthesis method hindered the development of HoMs.The sequential templating approach developed by our group,has greatly enriched its composition and'structure diversity.The progress in HoMS synthesis promotes the discovery of its characteristics as well as widens its application area.Typicall,the recently explored temporal-spatial ordering characteristic of HoMS has shown great promise in drug delivery and cascade catalysis application areas.Here,we summarize the current development progress of HoMS in the aspects of both synthesis and application,with a focus discussion on how to shape its application performance by manipulating its composition and structure features.In addition,we discuss the current challenges and providethe future potentials holdingfor HoMs.
基金supported by the National Natural Science Foundation of China(21820102002,21931012)。
文摘Hollow multishelled structure(HoMS)is one of the most promising multifunctional structures.The high complexity of its structure makes the general and controllable synthesis of HoMS rather challenging.By integration of multidisciplinary knowledge,a great achievement in HoMSs has been obtained in the past decade.Especially,the developed sequential templating approach has significantly boomed the progress of HoMS in composition and structure diversity and application area.The implementation of the temporal-spatial ordering in HoMS makes it indispensable in solving the key scientific problems in energy conversion,catalysis and drug delivery areas.Further development in HoMSs with novel intricate structures will bring new understandings.In this review,we systematically introduce the development history of HoMSs,summarize the inspiration inherited from the previous research on hollow structures,and discuss the milestones in the development of HoMSs,with a focus on the sequential templating approach for HoMS fabrication,attractive temporal-spatial ordering property and dynamic smart behavior for advanced applications.We hope to reveal the inherent relationship between the precise synthesis of HoMS and its highly tunable compositional and structural characteristics,and point out its future direction to boost HoMS area further.
文摘This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency, using the coordinated action of fast and slow reserves, for secure operation with minimum overall cost. It considers the reserves supplied by the conventional thermal generators (spinning reserves), hydro power units and load demands (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The proposed reserve activation approaches are solved using the genetic algorithm, and some of the simulation results are also compared using the Matlab optimization toolbox and the general algebraic modeling system (GAMS) software. The simulation studies are performed on the IEEE 30, 57 and 300 bus test systems. These results demonstrate the advantage of the proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.