期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Trends in Sequence-Defined Polyelectrolyte Systems:A Perspective
1
作者 Qiu-Hui Chang Ruo-Chao Wang +1 位作者 Le-Ying Qing Jian Jiang 《Chinese Journal of Polymer Science》 2025年第1期1-17,I0005,共18页
Polyelectrolytes(PEs)are polymers carrying ionizable groups along the chain backbone and play an important role in life and environmental sciences,industrial applications and other fields.Due to the complicated topolo... Polyelectrolytes(PEs)are polymers carrying ionizable groups along the chain backbone and play an important role in life and environmental sciences,industrial applications and other fields.Due to the complicated topological structure and electrostatic correlations of PEs,PEs exhibit very rich phase behavior and morphologies in both bulk and confined solutions.So far,many theories,simulations and machine learning approaches have been proposed to study the behavior of polyelectrolyte solutions,especially the intrinsic structure-property relationships.In this perspective,from a personal point of view,we present several recent trends in polyelectrolyte solutions.The main themes considered here are accelerated development of sequence-defined polyelectrolyte(SDPE)via artificial intelligence technology,liquid-liquid phase separation in bulk SDPE solutions,adsorption behaviors of SDPE in the vicinity of a single dielectric surface,and surface forces between two charged surfaces mediated by SDPE solutions. 展开更多
关键词 sequence-defined polyelectrolyte Structure-property relationships Liquid-liquid phase separation Surface and interface
原文传递
Controlled Fabrication of Uniform Digital Nanorods from Precise Sequence-Defined Amphiphilic Polymers in Aqueous Media 被引量:1
2
作者 Qiang-Qiang Shi Xin Zhou +4 位作者 Jie Xu Ning Wang Jia-Lin Zhang Xiang-Long Hu Shi-Yong Liu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第5期768-777,I0010,共11页
Compared with spherical micelles,rod/worm-like micelles not only have extended blood circulation duration,but also exhibit favorable cellular uptake behavior,which is promising for next-generation nanomedicine and bio... Compared with spherical micelles,rod/worm-like micelles not only have extended blood circulation duration,but also exhibit favorable cellular uptake behavior,which is promising for next-generation nanomedicine and biomaterials.However,the controllable fabrication of narrowly dispersed nanorods in aqueous media is still challenging.Herein,the methodology of thermal annealing was developed for the fabrication of helical nanorods as well as a series of nanorods with different lengths.The thermal annealing process generally consisted of adding a percentage of organic solvent(10%(V/V)or 20%(V/V))to the digital micellar aqueous dispersion,followed by heating at 90℃for 1 h,then cooling naturally to room temperature,and dialyzing against water to remove the organic solvent.Right-handed helical nanorods were afforded by the treatment of 45 nm digital micelles in the presence of 10%(V/V)dioxane,while left-handed helical nanorods were obtained in the presence of 20%(V/V)dioxane.Meanwhile,the controlled growth of rod-like digital micelles was achieved after thermal annealing in the presence of different types of organic solvents,and the length of the annealed nanorods was correlated with the types of organic solvent.Furthermore,no matter the size of initial digital micelles,they all exhibited similar trend of rod growth in the presence of a certain amount of organic solvent,allowing for controllable formulation of narrowly dispersed nanorods.In addition,supramolecular self-assembly by amphiphilic dendritic oligourethane readily fabricated diverse uniform nanorods in aqueous media.Overall,this work provided an attractive methodology to fabricate uniform digital nanorods. 展开更多
关键词 sequence-defined amphiphilic polymers Digital nanorods Thermal annealing Dendritic oligourethane SELF-ASSEMBLY
原文传递
Two tandem multicomponent reactions for the synthesis of sequence-defined polymers 被引量:1
3
作者 Lu Yang Ze Zhang +3 位作者 Bofei Cheng Yezi You Decheng Wu Chunyan Hong 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第11期1734-1740,共7页
Multicomponent polymerizations have become powerful tools for the construction of sequence-defined polymers. Although the Passerini multicomponent reaction has been widely used in the synthesis of sequence-defined pol... Multicomponent polymerizations have become powerful tools for the construction of sequence-defined polymers. Although the Passerini multicomponent reaction has been widely used in the synthesis of sequence-defined polymers, the tandem usage of the Passerini multicomponent reaction and other multicomponent reactions in one-pot for the synthesis of sequence-defined polymers has not been developed until now. In this contribution, we report the tandem usage of the Passerini three-component reaction and the three-component amine-thiol-ene conjugation reaction in one pot for the synthesis of sequence-defined polymers. The Passerini reaction between methacrylic acid, adipaldehyde, and 2-isocyanobutanoate was carried out, affording a new molecule containing two alkene units. Subsequently, an amine and a thiolactone were added to the reaction system, whereupon the three-component amine-thiol-ene conjugating reaction occurred to yield a sequence-defined polymer. This method offers more rapid access to sequence-defined polymers with high molecular diversity and complexity. 展开更多
关键词 multicomponent polymerizations multicomponent reaction sequence-defined polymers Passerini reaction
原文传递
Precise Pentamers with Diverse Monomer Sequences and Their Thermal Properties 被引量:1
4
作者 Rui-Zhe Liu Lei Zhang +1 位作者 Kun-Kun Guo Jiang-Tao Xu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第5期447-455,共9页
Sequenced-defined oligomer has been emerged as one of the hot topics in polymer chemistry due to its capability of precisely controlling both chain length and monomer sequence.Recent efforts have focused on developmen... Sequenced-defined oligomer has been emerged as one of the hot topics in polymer chemistry due to its capability of precisely controlling both chain length and monomer sequence.Recent efforts have focused on development of synthetic methodologies using state-ofthe-art chemistry tools.However,investigating the impact of minor changes in monomer sequence on physical properties of these materials is still underdeveloped.Herein,four sequenced pentamers are synthesized by a reversible addition-fragmentation chain transfer(RAFT)single unit monomer insertion technique,in which a base pentamer possesses a relatively rigid backbone comprising of five cyclic monomer units.One of the cyclic units in this base pentamer is replaced by an acyclic monomer at different locations(the 1st,3rd and 5th unit)to produce three modified pentamers,which leads to a significant decrease of glass transition temperature(Tg)compared to the base pentamer.Meanwhile,the modified pentamers with identical primary structures but distinct monomer sequences also present different Tg values depending on the position of the acyclic monomer unit.The middle(3rd)position of the acyclic unit causes profound decrease of Tg due to its increased molecular flexibility.These synthetic pentamers have been demonstrated to be excellent oligomeric plasticizers to modulate thermal transitions of bulk polymer materials. 展开更多
关键词 PENTAMER Sequence control Single unit monomer insertion Glass transition temperature sequence-defined oligomer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部