The Fushan Depression is one of the petroliferous depressions in the Beibuwan Basin,South China Sea.Previous studies have preliminarily explored the origin and source of crude oils in some areas of this depression.Nev...The Fushan Depression is one of the petroliferous depressions in the Beibuwan Basin,South China Sea.Previous studies have preliminarily explored the origin and source of crude oils in some areas of this depression.Nevertheless,no systematic investigations on the classification and origin of oils and hy-drocarbon migration processes have been made for the entire petroleum system in this depression,which has significantly hindered the hydrocarbon exploration in the region.A total of 32 mudstone and 58 oil samples from the Fushan Depression were analyzed to definite the detailed oil-source correlation within the sequence and sedimentary framework.The organic matter of third member of Paleogene Liushagang Formation(Els(3))source rocks,both deltaic and lacustrine mudstone,are algal-dominated with high abundance of C_(23)tricyclic terpane and C_(30)4-methylsteranes.The deltaic source rocks occur-ring in the first member(Els_(1))and second member(Els_(2))of the Paleogene Liushagang Formation are characterized by high abundance of C_(19+20)tricyclic terpane and oleanane,reflecting a more terrestrial plants contribution.While lacustrine source rocks of Els_(1)and Els_(2)display the reduced input of terrige-nous organic matter with relatively low abundance of C 19+20 tricyclic terpane and oleanane.Three types of oils were identified by their biomarker compositions in this study.Most of the oils discovered in the Huachang and Bailian Els_(1)reservoir belong to group A and were derived from lacustrine source rocks of Els_(1)and Els_(2).Group B oils are found within the Els_(1)and Els_(2)reservoirs,showing a close relation to the deltaic source rocks of Els_(1)and Els_(2),respectively.Group C oils,occurring in the Els3 reservoirs,have a good affinity with the Els3 source rocks.The spatial distribution and accumulation of different groups of oils are mainly controlled by the sedimentary facies and specific structural conditions.The Els_(2)reservoir in the Yong'an area belonging to Group B oil,are adjacent to the source kitchen and could be considered as the favorable exploration area in the future.展开更多
Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modula...Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modulatory effect on neural plasticity associated with MSL remains unclarified.This study was therefore designed to compare the role of the left primary motor cortex and the left supplementary motor area proper(SMAp)in modulating MSL across different complexity levels and for both hands,as well as the associated neuroplasticity by applying intermittent theta burst stimulation together with the electroencephalogram and concurrent transcranial magnetic stimulation.Our data demonstrated the role of SMAp stimulation in modulating neural communication to support MSL,which is achieved by facilitating regional activation and orchestrating neural coupling across distributed brain regions,particularly in interhemispheric connections.These findings may have important clinical implications,particularly for motor rehabilitation in populations such as post-stroke patients.展开更多
Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the ...Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.展开更多
Cystic echinococcosis (CE) is a prevalent zoonotic disease caused by Echinococcus granulosus, with a cosmopolitan distribution. The parasite is transmitted cyclically between canines and numerous intermediate herbivor...Cystic echinococcosis (CE) is a prevalent zoonotic disease caused by Echinococcus granulosus, with a cosmopolitan distribution. The parasite is transmitted cyclically between canines and numerous intermediate herbivorous livestock animals. Also, other Taeniid tapeworms could infect domestic dogs and they pose significant veterinary and public health concerns worldwide. This study aimed to develop a sensitive molecular method for detecting Echinococcus spp. DNA in dog fecal samples using next-generation sequencing (NGS). A set of PCR primers targeting conserved regions of Taeniid tapeworms’ 18s rRNA genes was designed and tested for amplifying genomic DNA from various tapeworm species. The PCR system demonstrated high sensitivity, amplifying DNA from all tested tapeworm species, with differences observed in amplified band sizes. The primers were adapted for NGS analysis by adding forward and reverse adapters, enabling the sequencing of amplified DNA fragments. Application of the developed PCR system to dog fecal samples collected from Yatta town, Palestine, revealed the presence of E. granulosus DNA in five out of 50 samples. NGS analysis confirmed the specificity of the amplified DNA fragments, showing 98% - 99% similarity with the 18s rDNA gene of E. granulosus. This study demonstrates the utility of NGS-based molecular methods for accurate and sensitive detection of Echinococcus spp. in dog fecal samples, providing valuable insights for epidemiological surveillance and control programs of echinococcosis in endemic regions.展开更多
Binary sequences constructed by Legendre symbols are widely used in communication and cryptography since they have many good pseudo-random properties.In this paper,we determine the 2-adic complexity of the sum sequenc...Binary sequences constructed by Legendre symbols are widely used in communication and cryptography since they have many good pseudo-random properties.In this paper,we determine the 2-adic complexity of the sum sequence of any k many Legendre sequences and show that the 2-adic complexity of the sum sequences of any k many Legendre sequences reaches the maximum by proving the case of k=2 and 3,which implies that the sum sequences can resist the attack of rational approximation algorithm.展开更多
Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribut...Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribution along railway routes,thereby achieving graded post-earthquake response measures.Design/methodology/approach–The seismic intensity monitoring system for railways adopts a two-level architecture,namely the seismic intensity monitoring equipment and the seismic intensity rapid reporting information center processing platform.The platform obtains measured instrumental intensity through the seismic intensity monitoring equipment deployed along railways and combines it with the National Seismic Network Earthquake Catalog to generate real-time railway seismic intensity distribution maps using the Kriging interpolation algorithm.A calculation method for railway seismic impact intervals is designed to calculate the mileage intervals where the intensity area corresponding to each contour line in the seismic intensity distribution map intersects with the railway line.Findings–The system was deployed for practical earthquake monitoring demonstration applications on the Nanjiang Railway Line in Xinjiang.During the operational period,the seismic intensity monitoring equipment calculated and uploaded instrumental intensity values to the seismic intensity rapid reporting information center processing platform a total of nine times.Among these,earthquakes triggering the Kriging interpolation algorithm occurred twice.The system operated stably throughout the application period and successfully visualized relevant seismic impact data,such as earthquake intensity distribution maps and affected railway mileage sections.These results validate the system’s practicality and effectiveness.Originality/value–The seismic intensity monitoring for the railway system designed in this study can integrate the measured instrumental intensity data along railways and the earthquake catalog of the National Seismic Network.It uses the Kriging interpolation method to calculate the intensity distribution and determine the seismic impact scope,thereby addressing the issue that the seismic intensity distribution calculated by traditional attenuation formulas deviates from reality.The system can provide clear graded interval recommendations for post-earthquake disposal,effectively improve the efficiency of post-earthquake recovery and inspection and offer a decision-making basis for restoring railway operations quickly.展开更多
With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multi...With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.展开更多
Blended acquisition offers efficiency improvements over conventional seismic data acquisition, at the cost of introducing blending noise effects. Besides, seismic data often suffers from irregularly missing shots caus...Blended acquisition offers efficiency improvements over conventional seismic data acquisition, at the cost of introducing blending noise effects. Besides, seismic data often suffers from irregularly missing shots caused by artificial or natural effects during blended acquisition. Therefore, blending noise attenuation and missing shots reconstruction are essential for providing high-quality seismic data for further seismic processing and interpretation. The iterative shrinkage thresholding algorithm can help obtain deblended data based on sparsity assumptions of complete unblended data, and it characterizes seismic data linearly. Supervised learning algorithms can effectively capture the nonlinear relationship between incomplete pseudo-deblended data and complete unblended data. However, the dependence on complete unblended labels limits their practicality in field applications. Consequently, a self-supervised algorithm is presented for simultaneous deblending and interpolation of incomplete blended data, which minimizes the difference between simulated and observed incomplete pseudo-deblended data. The used blind-trace U-Net (BTU-Net) prevents identity mapping during complete unblended data estimation. Furthermore, a multistep process with blending noise simulation-subtraction and missing traces reconstruction-insertion is used in each step to improve the deblending and interpolation performance. Experiments with synthetic and field incomplete blended data demonstrate the effectiveness of the multistep self-supervised BTU-Net algorithm.展开更多
Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduce...Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.展开更多
The optimization of polymer structures aims to determine an optimal sequence or topology that achieves a given target property or structural performance.This inverse design problem involves searching within a vast com...The optimization of polymer structures aims to determine an optimal sequence or topology that achieves a given target property or structural performance.This inverse design problem involves searching within a vast combinatorial phase space defined by components,se-quences,and topologies,and is often computationally intractable due to its NP-hard nature.At the core of this challenge lies the need to evalu-ate complex correlations among structural variables,a classical problem in both statistical physics and combinatorial optimization.To address this,we adopt a mean-field approach that decouples direct variable-variable interactions into effective interactions between each variable and an auxiliary field.The simulated bifurcation(SB)algorithm is employed as a mean-field-based optimization framework.It constructs a Hamiltonian dynamical system by introducing generalized momentum fields,enabling efficient decoupling and dynamic evolution of strongly coupled struc-tural variables.Using the sequence optimization of a linear copolymer adsorbing on a solid surface as a case study,we demonstrate the applica-bility of the SB algorithm to high-dimensional,non-differentiable combinatorial optimization problems.Our results show that SB can efficiently discover polymer sequences with excellent adsorption performance within a reasonable computational time.Furthermore,it exhibits robust con-vergence and high parallel scalability across large design spaces.The approach developed in this work offers a new computational pathway for polymer structure optimization.It also lays a theoretical foundation for future extensions to topological design problems,such as optimizing the number and placement of side chains,as well as the co-optimization of sequence and topology.展开更多
Disaster mitigation necessitates scientifi c and accurate aftershock forecasting during the critical 2 h after an earthquake. However, this action faces immense challenges due to the lack of early postearthquake data ...Disaster mitigation necessitates scientifi c and accurate aftershock forecasting during the critical 2 h after an earthquake. However, this action faces immense challenges due to the lack of early postearthquake data and the unreliability of forecasts. To obtain foundational data for sequence parameters of the land-sea adjacent zone and establish a reliable and operational aftershock forecasting framework, we combined the initial sequence parameters extracted from envelope functions and incorporated small-earthquake information into our model to construct a Bayesian algorithm for the early postearthquake stage. We performed parameter fitting and early postearthquake aftershock occurrence rate forecasting and effectiveness evaluation for 36 earthquake sequences with M ≥ 4.0 in the Bohai Rim region since 2010. According to the results, during the early stage after the mainshock, earthquake sequence parameters exhibited relatively drastic fl uctuations with signifi cant errors. The integration of prior information can mitigate the intensity of these changes and reduce errors. The initial and stable sequence parameters generally display advantageous distribution characteristics, with each parameter’s distribution being relatively concentrated and showing good symmetry and remarkable consistency. The sequence parameter p-values were relatively small, which indicates the comparatively slow attenuation of signifi cant earthquake events in the Bohai Rim region. A certain positive correlation was observed between earthquake sequence parameters b and p. However, sequence parameters are unrelated to the mainshock magnitude, which implies that their statistical characteristics and trends are universal. The Bayesian algorithm revealed a good forecasting capability for aftershocks in the early postearthquake period (2 h) in the Bohai Rim region, with an overall forecasting effi cacy rate of 76.39%. The proportion of “too low” failures exceeded that of “too high” failures, and the number of forecasting failures for the next three days was greater than that for the next day.展开更多
Fibonacci sequence,generated by summing the preceding two terms,is a classical sequence renowned for its elegant properties.In this paper,leveraging properties of generalized Fibonacci sequences and formulas for conse...Fibonacci sequence,generated by summing the preceding two terms,is a classical sequence renowned for its elegant properties.In this paper,leveraging properties of generalized Fibonacci sequences and formulas for consecutive sums of equidistant sub-sequences,we investigate the ratio of the sum of numbers along main-diagonal and sub-diagonal of odd-order grids containing generalized Fibonacci sequences.We show that this ratio is solely dependent on the order of the grid,providing a concise and splendid identity.展开更多
The study of sequence stratigraphy often focuses on shallow marine and shelf-edge regions,while research on deep-sea stratigraphic sequences remains relatively weak.This study,based on highresolution 3D seismic data a...The study of sequence stratigraphy often focuses on shallow marine and shelf-edge regions,while research on deep-sea stratigraphic sequences remains relatively weak.This study,based on highresolution 3D seismic data and drilling information,utilized sequence stratigraphy and seismic sedimentology as guidelines,and employed seismic interpretation methods to performed a division of deepsea stratigraphic sequences within the Romney 3D seismic survey area in the deep-water Taranaki Basin,New Zealand.Furthermore,it analyzed the characteristics of typical depositional systems and their associated controlling factors.The findings are as follows:(1)Based on seismic reflection termination relationships and seismic facies characteristics,four second-order sequence boundaries and nine thirdorder sequence boundaries were identified,resulting in the delineation of three second-order sequences and twelve third-order sequences in the basin.(2)Five seismic facies were recognized,corresponding to five typical sedimentary bodies:mass transport deposits(MTDs),deep-water channel,levee deposits,deltaic deposits,and pelagic deposits.However,due to the relatively thin sedimentary thickness of carbonate sediments,the seismic facies characteristics of carbonate sediments cannot be discerned in seismic data,but can be identified based on well data.Deltaic sediments mainly developed during the rift stage of the basin,while carbonate sediments formed during the transition from a passive to an active margin.Deep-water channel and levee deposits and MTDs emerged during the active margin stage,while pelagic deposits are ubiquitous in marine environments.(3)The uplift of New Zealand's interior and climate-driven erosion caused the resurgence of clastic sediments,which began to be transported to the deep sea,the seafloor topography would directly affect the movement path of sediment gravity flow,and sediment supply can affect the development and evolution of sedimentary systems.(4)Event deposits boundaries,such as erosional scour surfaces formed by channels and unconformities created by MTDs,can serve as boundaries for the division of deep-water stratigraphic sequences.This study proposes a method for delineating deep-water stratigraphic sequences using event deposits,particularly suitable under conditions where the influence of relative sea-level changes on deep-water deposits is relatively weak.This research not only enhances the understanding of deep-water depositional sequences but also provides a reference for studies on the evolution of deep-water deposition and its controlling factors in research areas with similar geological backgrounds worldwide.展开更多
In this paper,we introduce non-abelian cohomology groups and classify the nonabelian extensions of Rota-Baxter pre-Lie algebras in terms of non-abelian cohomology groups.Next,we explore the inducibility of pairs of au...In this paper,we introduce non-abelian cohomology groups and classify the nonabelian extensions of Rota-Baxter pre-Lie algebras in terms of non-abelian cohomology groups.Next,we explore the inducibility of pairs of automorphisms and derive the analog Wells exact sequences under the circumstance of Rota-Baxter pre-Lie algebras.Finally,we discuss the inducibility problem of pairs of automorphisms about an abelian extensions of Rota-Baxter pre-Lie algebras.展开更多
Pyrola atropurpurea Franch is an important annual herbaceous plant.Few genomic analyses have been conducted on this plant,and chloroplast genome research will enrich its genomics basis.This study is based on high-thro...Pyrola atropurpurea Franch is an important annual herbaceous plant.Few genomic analyses have been conducted on this plant,and chloroplast genome research will enrich its genomics basis.This study is based on high-throughput sequencing technology and Bioinformatics methods to obtain the sequence,structure,and other characteristics of the P.atropurpurea chloroplast genome.The result showed that the chloroplast genome of P.atropurpurea has a double-stranded circular structure with a total length of 172,535 bp and a typical four-segment structure.The genome has annotated a total of 132 functional genes,including 43 tRNAs,8 rRNAs,76 protein-coding genes,and 5 pseudo-genes.In total,358 SSR loci were checked out,mainly composed of mononucleotide and trinucleotide repeat.There are three types of scattered repetitive sequences,totaling 4223,including 2452 forward repeats,1763 palindrome repeats,and eight reverse repeats.The optimal codon usage frequency is relatively high with AT usage preference in this genome.Chloroplast genome comparative analysis in the family Ericaceae shows that the overall sequence is more complex,and there are more variations in the gene interval region.The collinearity analysis indicated that there is a complex rearrangement of species between different genera in Ericaceae.The selection pressure analysis showed that the protein-encoding genes rpl33 and rps16 were positively selected among the seven medicinal plants in Ericaceae.The maximum likelihood tree shows that the genetic relationship among P.atropurpurea,Pyrola rotundifolia,and Chimaphila japonica is relatively close.Therefore,an important data basis was provided for species identification,genetic diversity,and phylogenetic studies of P.atropurpurea and even this genus of plants.展开更多
Selecting appropriate tourist attractions to visit in real time is an important problem for travellers.Since recommenders proactively suggest items based on user preference,they are a promising solution for this probl...Selecting appropriate tourist attractions to visit in real time is an important problem for travellers.Since recommenders proactively suggest items based on user preference,they are a promising solution for this problem.Travellers visit tourist attractions sequentially by considering multiple attributes at the same time.Therefore,it is desirable to consider this when developing recommenders for tourist attractions.Using GRU4REC,we proposed RNN-based sequence-aware recommenders(RNN-SARs)that use multiple sequence datasets for training the recommended model,named multi-RNN-SARs.We proposed two types of multi-RNN-SARs-concatenate-RNN-SARs and parallel-RNN-SARs.In order to evaluate multi-RNN-SARs,we compared hit rate(HR)and mean reciprocal rank(MRR)of the item-based collaborative filtering recommender(item-CFR),RNN-SAR with the single-sequence dataset(basic-RNN-SAR),multi-RNN-SARs and the state-of-the-art SARs using a real-world travel dataset.Our research shows that multi-RNN-SARs have significantly higher performances compared to item-CFR.Not all multi-RNNSARs outperform basic-RNN-SAR but the best multi-RNN-SAR achieves comparable performance to that of the state-of-the-art algorithms.These results highlight the importance of using multiple sequence datasets in RNN-SARs and the importance of choosing appropriate sequence datasets and learning methods for implementing multi-RNN-SARs in practice.展开更多
The cutoff frequency is one of the crucial parameters that characterize the environment. In this paper, we estimate the cutoff frequency of the Ohmic spectral density by applying the π-pulse sequences(both equidistan...The cutoff frequency is one of the crucial parameters that characterize the environment. In this paper, we estimate the cutoff frequency of the Ohmic spectral density by applying the π-pulse sequences(both equidistant and optimized)to a quantum probe coupled to a bosonic environment. To demonstrate the precision of cutoff frequency estimation, we theoretically derive the quantum Fisher information(QFI) and quantum signal-to-noise ratio(QSNR) across sub-Ohmic,Ohmic, and super-Ohmic environments, and investigate their behaviors through numerical examples. The results indicate that, compared to the equidistant π-pulse sequence, the optimized π-pulse sequence significantly shortens the time to reach maximum QFI while enhancing the precision of cutoff frequency estimation, particularly in deep sub-Ohmic and deep super-Ohmic environments.展开更多
The high-frequency cycles seen in the carbonates of the Cambrian Xiannüdong Formation in the Sichuan Basin commonly exhibit a certain coupling relationship with the development of grain shoals;this influences the...The high-frequency cycles seen in the carbonates of the Cambrian Xiannüdong Formation in the Sichuan Basin commonly exhibit a certain coupling relationship with the development of grain shoals;this influences the accuracy of reservoir predictions and the selection of favorable zones for hydrocarbon.MATLAB-based wavelet transform technology is employed to analyze the characteristics of the high-frequency sequences in the Xiannüdong Formation,establish a sequence stratigraphic framework,and clarify their vertical and horizontal relationships with the development of grain shoals.The results indicate that using the Dmey wavelet for continuous wavelet transform of gamma ray(GR)curves effectively reflects regional sedimentary cycles.In the Xiannüdong Formation,we identified two third-order sequences,five fourth-order sequences,and ten fifth-order sequences,all of which exhibit a strong correlation with the one-dimensional wavelet curves derived from wavelet transformations.In the sequence stratigraphic framework,early deposition of the Xiannüdong Formation briefly inherited transgressive processes from the Qiongzhusi Formation,and subsequently underwent a long and frequently fluctuating regressive phase.This study elucidates the development characteristics of grain shoals during marine regressions,and identifies lithology primarily as oolitic limestone,oolitic dolostone,doloarenite,silty oolitic limestone,and silty oolitic dolostone.Longitudinally,grain shoals are primarily distributed in the SQ1^(2),SQ2^(1),and SQ2^(2)intervals,and are characterized by the interbedded development of thin and thick layers.They form predominantly during the regressive phase of fourth-order sequences.Planarly,they exhibit a belt-like distribution in the southwest-northeast direction.These findings provide novel insights for conducting high-frequency sequence stratigraphy studies utilizing logging data.They also possess practical implications for constructing high-precision sequence stratigraphic frameworks as well as for predicting the distribution of grain shoals within the study area.展开更多
During 7th-15th October 2023,an earthquake sequence with four MW6.2-6.3 occurred in the Herat region,Afghanistan,causing damage to buildings,fire,and loss of life.The co-seismic deformation induced by the earthquake s...During 7th-15th October 2023,an earthquake sequence with four MW6.2-6.3 occurred in the Herat region,Afghanistan,causing damage to buildings,fire,and loss of life.The co-seismic deformation induced by the earthquake sequence helps us invert the rupture model of these earthquakes to constrain the geometric characteristics of the Herat fault system,and estimate the future seismic risk at this fault system.In this work,we utilized the line-of-sight(LOS)displacements from Interferometric Synthetic Aperture Radar(InSAR)observations to determine the optimal fault geometry and slip distribution of the 2023 Afghanistan earthquake sequence through a two-step inversion method.Our results indicated that these four MW6.2-6.3 earthquakes ruptured the western and northwestern segments of the Herat fault system,which are dominated by thrust motions.We identified two fault models from InSAR LOS displacement data,with two different strikes,and the same dip angle range of about 35-45°.The source model with the strike of 280.5°has a peak slip of about 2.2 m,a central rupture zone with about 25 km along-strike length,and a depth range of 5-10 km,corresponding to a MW6.67 earthquake.The following source model with the strike direction of about 240°has smaller rupture length and width,and a peak slip of about 2.5 m,corresponding to a MW6.65 earthquake.We also calculated the Coulomb Failure Stress of the Herat fault system around this rupture area caused by this earthquake sequence.Our results indicated that the stress loading at the western segment of the Herat Fault system is greater than the triggering threshold,suggesting that the future seismic risk in this area is at a relatively high stage.In summary,the rupture model of these earthquakes indicates that two unidentified thrust faults between the western and northwestern segments of the Herat fault system are in a compression-stress environment.展开更多
[Objectives]This study was conducted to detect and analyze tomato leaf curl New Delhi virus(ToLCNDV).[Methods]Through PCR detection,sequence analysis,and pathogenicity verification,tomato leaf curl New Delhi virus(ToL...[Objectives]This study was conducted to detect and analyze tomato leaf curl New Delhi virus(ToLCNDV).[Methods]Through PCR detection,sequence analysis,and pathogenicity verification,tomato leaf curl New Delhi virus(ToLCNDV)was identified in zucchini exhibiting systemic disease symptoms during a 2024 outbreak in Qingzhou City,Shandong Province,and was designated as ToLCNDV-SD.[Results]Specific primer amplification showed that all eight diseased samples produced bands of 504 bp(DNA-A)and 892 bp(DNA-B).Sequencing analysis revealed that ToLCNDV-SD DNA-A shared 96.10%homology with an Indonesian melon isolate(LC421834.1),while DNA-B showed 88.31%homology with a Malaysian bitter gourd isolate(MW248678.1).Phylogenetic analysis indicated its closest relationship with Southeast Asian cucurbit-infecting isolates.Friction transmission tests confirmed that the virus could spread mechanically,inducing typical symptoms 14 d after inoculation with positive PCR detection.[Conclusions]This study provides important insights for understanding the epidemic mechanisms and control strategies of ToLCNDV in China.展开更多
基金funded by the South Oil Exploration and Development Company of PetroChina(2021-HNYJ-010).
文摘The Fushan Depression is one of the petroliferous depressions in the Beibuwan Basin,South China Sea.Previous studies have preliminarily explored the origin and source of crude oils in some areas of this depression.Nevertheless,no systematic investigations on the classification and origin of oils and hy-drocarbon migration processes have been made for the entire petroleum system in this depression,which has significantly hindered the hydrocarbon exploration in the region.A total of 32 mudstone and 58 oil samples from the Fushan Depression were analyzed to definite the detailed oil-source correlation within the sequence and sedimentary framework.The organic matter of third member of Paleogene Liushagang Formation(Els(3))source rocks,both deltaic and lacustrine mudstone,are algal-dominated with high abundance of C_(23)tricyclic terpane and C_(30)4-methylsteranes.The deltaic source rocks occur-ring in the first member(Els_(1))and second member(Els_(2))of the Paleogene Liushagang Formation are characterized by high abundance of C_(19+20)tricyclic terpane and oleanane,reflecting a more terrestrial plants contribution.While lacustrine source rocks of Els_(1)and Els_(2)display the reduced input of terrige-nous organic matter with relatively low abundance of C 19+20 tricyclic terpane and oleanane.Three types of oils were identified by their biomarker compositions in this study.Most of the oils discovered in the Huachang and Bailian Els_(1)reservoir belong to group A and were derived from lacustrine source rocks of Els_(1)and Els_(2).Group B oils are found within the Els_(1)and Els_(2)reservoirs,showing a close relation to the deltaic source rocks of Els_(1)and Els_(2),respectively.Group C oils,occurring in the Els3 reservoirs,have a good affinity with the Els3 source rocks.The spatial distribution and accumulation of different groups of oils are mainly controlled by the sedimentary facies and specific structural conditions.The Els_(2)reservoir in the Yong'an area belonging to Group B oil,are adjacent to the source kitchen and could be considered as the favorable exploration area in the future.
基金supported by grants from the Zhejiang Provincial Natural Science Foundation(LGJ22H180001)Zhejiang Medical and Health Science and Technology Project(2021KY249)the National Key R&D Program of China(2017YFC1310000).
文摘Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modulatory effect on neural plasticity associated with MSL remains unclarified.This study was therefore designed to compare the role of the left primary motor cortex and the left supplementary motor area proper(SMAp)in modulating MSL across different complexity levels and for both hands,as well as the associated neuroplasticity by applying intermittent theta burst stimulation together with the electroencephalogram and concurrent transcranial magnetic stimulation.Our data demonstrated the role of SMAp stimulation in modulating neural communication to support MSL,which is achieved by facilitating regional activation and orchestrating neural coupling across distributed brain regions,particularly in interhemispheric connections.These findings may have important clinical implications,particularly for motor rehabilitation in populations such as post-stroke patients.
基金Supported by Leading Talent Program of Autonomous Region(2022TSYCLJ0070)PetroChina Prospective and Basic Technological Project(2021DJ0108)Natural Science Foundation for Outstanding Young People in Shandong Province(ZR2022YQ30).
文摘Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.
文摘Cystic echinococcosis (CE) is a prevalent zoonotic disease caused by Echinococcus granulosus, with a cosmopolitan distribution. The parasite is transmitted cyclically between canines and numerous intermediate herbivorous livestock animals. Also, other Taeniid tapeworms could infect domestic dogs and they pose significant veterinary and public health concerns worldwide. This study aimed to develop a sensitive molecular method for detecting Echinococcus spp. DNA in dog fecal samples using next-generation sequencing (NGS). A set of PCR primers targeting conserved regions of Taeniid tapeworms’ 18s rRNA genes was designed and tested for amplifying genomic DNA from various tapeworm species. The PCR system demonstrated high sensitivity, amplifying DNA from all tested tapeworm species, with differences observed in amplified band sizes. The primers were adapted for NGS analysis by adding forward and reverse adapters, enabling the sequencing of amplified DNA fragments. Application of the developed PCR system to dog fecal samples collected from Yatta town, Palestine, revealed the presence of E. granulosus DNA in five out of 50 samples. NGS analysis confirmed the specificity of the amplified DNA fragments, showing 98% - 99% similarity with the 18s rDNA gene of E. granulosus. This study demonstrates the utility of NGS-based molecular methods for accurate and sensitive detection of Echinococcus spp. in dog fecal samples, providing valuable insights for epidemiological surveillance and control programs of echinococcosis in endemic regions.
文摘Binary sequences constructed by Legendre symbols are widely used in communication and cryptography since they have many good pseudo-random properties.In this paper,we determine the 2-adic complexity of the sum sequence of any k many Legendre sequences and show that the 2-adic complexity of the sum sequences of any k many Legendre sequences reaches the maximum by proving the case of k=2 and 3,which implies that the sum sequences can resist the attack of rational approximation algorithm.
基金funded by the Research and Development Fund Project of China Academy of Railway Science Group Co.,Ltd.,(No:2023YJ259)the Science and Technology Research and Development Program Project of China State Railway Group Co.,Ltd.(No:J2024G008).
文摘Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribution along railway routes,thereby achieving graded post-earthquake response measures.Design/methodology/approach–The seismic intensity monitoring system for railways adopts a two-level architecture,namely the seismic intensity monitoring equipment and the seismic intensity rapid reporting information center processing platform.The platform obtains measured instrumental intensity through the seismic intensity monitoring equipment deployed along railways and combines it with the National Seismic Network Earthquake Catalog to generate real-time railway seismic intensity distribution maps using the Kriging interpolation algorithm.A calculation method for railway seismic impact intervals is designed to calculate the mileage intervals where the intensity area corresponding to each contour line in the seismic intensity distribution map intersects with the railway line.Findings–The system was deployed for practical earthquake monitoring demonstration applications on the Nanjiang Railway Line in Xinjiang.During the operational period,the seismic intensity monitoring equipment calculated and uploaded instrumental intensity values to the seismic intensity rapid reporting information center processing platform a total of nine times.Among these,earthquakes triggering the Kriging interpolation algorithm occurred twice.The system operated stably throughout the application period and successfully visualized relevant seismic impact data,such as earthquake intensity distribution maps and affected railway mileage sections.These results validate the system’s practicality and effectiveness.Originality/value–The seismic intensity monitoring for the railway system designed in this study can integrate the measured instrumental intensity data along railways and the earthquake catalog of the National Seismic Network.It uses the Kriging interpolation method to calculate the intensity distribution and determine the seismic impact scope,thereby addressing the issue that the seismic intensity distribution calculated by traditional attenuation formulas deviates from reality.The system can provide clear graded interval recommendations for post-earthquake disposal,effectively improve the efficiency of post-earthquake recovery and inspection and offer a decision-making basis for restoring railway operations quickly.
基金funded by theNational Science and Technology Council of Taiwan under the grant number NSTC 113-2221-E-035-058.
文摘With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.
基金supported by the National Natural Science Foundation of China(42374134,42304125,U20B6005)the Science and Technology Commission of Shanghai Municipality(23JC1400502)the Fundamental Research Funds for the Central Universities.
文摘Blended acquisition offers efficiency improvements over conventional seismic data acquisition, at the cost of introducing blending noise effects. Besides, seismic data often suffers from irregularly missing shots caused by artificial or natural effects during blended acquisition. Therefore, blending noise attenuation and missing shots reconstruction are essential for providing high-quality seismic data for further seismic processing and interpretation. The iterative shrinkage thresholding algorithm can help obtain deblended data based on sparsity assumptions of complete unblended data, and it characterizes seismic data linearly. Supervised learning algorithms can effectively capture the nonlinear relationship between incomplete pseudo-deblended data and complete unblended data. However, the dependence on complete unblended labels limits their practicality in field applications. Consequently, a self-supervised algorithm is presented for simultaneous deblending and interpolation of incomplete blended data, which minimizes the difference between simulated and observed incomplete pseudo-deblended data. The used blind-trace U-Net (BTU-Net) prevents identity mapping during complete unblended data estimation. Furthermore, a multistep process with blending noise simulation-subtraction and missing traces reconstruction-insertion is used in each step to improve the deblending and interpolation performance. Experiments with synthetic and field incomplete blended data demonstrate the effectiveness of the multistep self-supervised BTU-Net algorithm.
文摘Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.
基金supported by the Fundamental Research Funds for the Central Universities(No.2024JBZX029)Shijiazhuang High Level Science and Technology Innovation and Entrepreneurship Talent Project(No.08202307)the National Natural Science Foundation of China(NSFC)(No.22173004).
文摘The optimization of polymer structures aims to determine an optimal sequence or topology that achieves a given target property or structural performance.This inverse design problem involves searching within a vast combinatorial phase space defined by components,se-quences,and topologies,and is often computationally intractable due to its NP-hard nature.At the core of this challenge lies the need to evalu-ate complex correlations among structural variables,a classical problem in both statistical physics and combinatorial optimization.To address this,we adopt a mean-field approach that decouples direct variable-variable interactions into effective interactions between each variable and an auxiliary field.The simulated bifurcation(SB)algorithm is employed as a mean-field-based optimization framework.It constructs a Hamiltonian dynamical system by introducing generalized momentum fields,enabling efficient decoupling and dynamic evolution of strongly coupled struc-tural variables.Using the sequence optimization of a linear copolymer adsorbing on a solid surface as a case study,we demonstrate the applica-bility of the SB algorithm to high-dimensional,non-differentiable combinatorial optimization problems.Our results show that SB can efficiently discover polymer sequences with excellent adsorption performance within a reasonable computational time.Furthermore,it exhibits robust con-vergence and high parallel scalability across large design spaces.The approach developed in this work offers a new computational pathway for polymer structure optimization.It also lays a theoretical foundation for future extensions to topological design problems,such as optimizing the number and placement of side chains,as well as the co-optimization of sequence and topology.
基金supported by the Natural Science Foundation of Tianjin (No. 22JCQNJC01070)the National Natural Science Foundation of China (No. 42404079)the Key Project of Tianjin Earthquake Agency (No. Zd202402)。
文摘Disaster mitigation necessitates scientifi c and accurate aftershock forecasting during the critical 2 h after an earthquake. However, this action faces immense challenges due to the lack of early postearthquake data and the unreliability of forecasts. To obtain foundational data for sequence parameters of the land-sea adjacent zone and establish a reliable and operational aftershock forecasting framework, we combined the initial sequence parameters extracted from envelope functions and incorporated small-earthquake information into our model to construct a Bayesian algorithm for the early postearthquake stage. We performed parameter fitting and early postearthquake aftershock occurrence rate forecasting and effectiveness evaluation for 36 earthquake sequences with M ≥ 4.0 in the Bohai Rim region since 2010. According to the results, during the early stage after the mainshock, earthquake sequence parameters exhibited relatively drastic fl uctuations with signifi cant errors. The integration of prior information can mitigate the intensity of these changes and reduce errors. The initial and stable sequence parameters generally display advantageous distribution characteristics, with each parameter’s distribution being relatively concentrated and showing good symmetry and remarkable consistency. The sequence parameter p-values were relatively small, which indicates the comparatively slow attenuation of signifi cant earthquake events in the Bohai Rim region. A certain positive correlation was observed between earthquake sequence parameters b and p. However, sequence parameters are unrelated to the mainshock magnitude, which implies that their statistical characteristics and trends are universal. The Bayesian algorithm revealed a good forecasting capability for aftershocks in the early postearthquake period (2 h) in the Bohai Rim region, with an overall forecasting effi cacy rate of 76.39%. The proportion of “too low” failures exceeded that of “too high” failures, and the number of forecasting failures for the next three days was greater than that for the next day.
基金Supported by the National Natural Science Foundation of China(Grant No.12471298)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.23JSQ031)the Shaanxi Province College Student Innovation and Entrepreneurship Training Program(Grant Nos.S202210699481 and S202310699324X).
文摘Fibonacci sequence,generated by summing the preceding two terms,is a classical sequence renowned for its elegant properties.In this paper,leveraging properties of generalized Fibonacci sequences and formulas for consecutive sums of equidistant sub-sequences,we investigate the ratio of the sum of numbers along main-diagonal and sub-diagonal of odd-order grids containing generalized Fibonacci sequences.We show that this ratio is solely dependent on the order of the grid,providing a concise and splendid identity.
基金the National Natural Science Foundation of China(Grant Nos.42077410 and 41872112).We acknowledge the insights and efforts of journal editor(Jie Hao)and three anonymous reviewers that improved the quality of the manuscript.
文摘The study of sequence stratigraphy often focuses on shallow marine and shelf-edge regions,while research on deep-sea stratigraphic sequences remains relatively weak.This study,based on highresolution 3D seismic data and drilling information,utilized sequence stratigraphy and seismic sedimentology as guidelines,and employed seismic interpretation methods to performed a division of deepsea stratigraphic sequences within the Romney 3D seismic survey area in the deep-water Taranaki Basin,New Zealand.Furthermore,it analyzed the characteristics of typical depositional systems and their associated controlling factors.The findings are as follows:(1)Based on seismic reflection termination relationships and seismic facies characteristics,four second-order sequence boundaries and nine thirdorder sequence boundaries were identified,resulting in the delineation of three second-order sequences and twelve third-order sequences in the basin.(2)Five seismic facies were recognized,corresponding to five typical sedimentary bodies:mass transport deposits(MTDs),deep-water channel,levee deposits,deltaic deposits,and pelagic deposits.However,due to the relatively thin sedimentary thickness of carbonate sediments,the seismic facies characteristics of carbonate sediments cannot be discerned in seismic data,but can be identified based on well data.Deltaic sediments mainly developed during the rift stage of the basin,while carbonate sediments formed during the transition from a passive to an active margin.Deep-water channel and levee deposits and MTDs emerged during the active margin stage,while pelagic deposits are ubiquitous in marine environments.(3)The uplift of New Zealand's interior and climate-driven erosion caused the resurgence of clastic sediments,which began to be transported to the deep sea,the seafloor topography would directly affect the movement path of sediment gravity flow,and sediment supply can affect the development and evolution of sedimentary systems.(4)Event deposits boundaries,such as erosional scour surfaces formed by channels and unconformities created by MTDs,can serve as boundaries for the division of deep-water stratigraphic sequences.This study proposes a method for delineating deep-water stratigraphic sequences using event deposits,particularly suitable under conditions where the influence of relative sea-level changes on deep-water deposits is relatively weak.This research not only enhances the understanding of deep-water depositional sequences but also provides a reference for studies on the evolution of deep-water deposition and its controlling factors in research areas with similar geological backgrounds worldwide.
基金Supported by the National Natural Science Foundation of China(Grant No.12161013)the School-Level Student Research Project of Guizhou University of Finance and Economics(Grant No.2024ZXSY239).
文摘In this paper,we introduce non-abelian cohomology groups and classify the nonabelian extensions of Rota-Baxter pre-Lie algebras in terms of non-abelian cohomology groups.Next,we explore the inducibility of pairs of automorphisms and derive the analog Wells exact sequences under the circumstance of Rota-Baxter pre-Lie algebras.Finally,we discuss the inducibility problem of pairs of automorphisms about an abelian extensions of Rota-Baxter pre-Lie algebras.
基金supported by the Education Reform Program of Jiangxi Provincial Department of Education(JXJG-22-23-3,JXJG-23-23-5)the“Biology and Medicine”Discipline Construction Project of Nanchang NormalUniversity(100/20149)+2 种基金Jiangxi Province Key Laboratory of Oil Crops Biology(YLKFKT202203)the Education Reform Program of Nanchang Normal University(NSJG-21-25)Nanchang Key Laboratory of Comprehensive Research and Development of Brasenia schreberi(32060078).
文摘Pyrola atropurpurea Franch is an important annual herbaceous plant.Few genomic analyses have been conducted on this plant,and chloroplast genome research will enrich its genomics basis.This study is based on high-throughput sequencing technology and Bioinformatics methods to obtain the sequence,structure,and other characteristics of the P.atropurpurea chloroplast genome.The result showed that the chloroplast genome of P.atropurpurea has a double-stranded circular structure with a total length of 172,535 bp and a typical four-segment structure.The genome has annotated a total of 132 functional genes,including 43 tRNAs,8 rRNAs,76 protein-coding genes,and 5 pseudo-genes.In total,358 SSR loci were checked out,mainly composed of mononucleotide and trinucleotide repeat.There are three types of scattered repetitive sequences,totaling 4223,including 2452 forward repeats,1763 palindrome repeats,and eight reverse repeats.The optimal codon usage frequency is relatively high with AT usage preference in this genome.Chloroplast genome comparative analysis in the family Ericaceae shows that the overall sequence is more complex,and there are more variations in the gene interval region.The collinearity analysis indicated that there is a complex rearrangement of species between different genera in Ericaceae.The selection pressure analysis showed that the protein-encoding genes rpl33 and rps16 were positively selected among the seven medicinal plants in Ericaceae.The maximum likelihood tree shows that the genetic relationship among P.atropurpurea,Pyrola rotundifolia,and Chimaphila japonica is relatively close.Therefore,an important data basis was provided for species identification,genetic diversity,and phylogenetic studies of P.atropurpurea and even this genus of plants.
文摘Selecting appropriate tourist attractions to visit in real time is an important problem for travellers.Since recommenders proactively suggest items based on user preference,they are a promising solution for this problem.Travellers visit tourist attractions sequentially by considering multiple attributes at the same time.Therefore,it is desirable to consider this when developing recommenders for tourist attractions.Using GRU4REC,we proposed RNN-based sequence-aware recommenders(RNN-SARs)that use multiple sequence datasets for training the recommended model,named multi-RNN-SARs.We proposed two types of multi-RNN-SARs-concatenate-RNN-SARs and parallel-RNN-SARs.In order to evaluate multi-RNN-SARs,we compared hit rate(HR)and mean reciprocal rank(MRR)of the item-based collaborative filtering recommender(item-CFR),RNN-SAR with the single-sequence dataset(basic-RNN-SAR),multi-RNN-SARs and the state-of-the-art SARs using a real-world travel dataset.Our research shows that multi-RNN-SARs have significantly higher performances compared to item-CFR.Not all multi-RNNSARs outperform basic-RNN-SAR but the best multi-RNN-SAR achieves comparable performance to that of the state-of-the-art algorithms.These results highlight the importance of using multiple sequence datasets in RNN-SARs and the importance of choosing appropriate sequence datasets and learning methods for implementing multi-RNN-SARs in practice.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62403150)the Innovation Project of Guangxi Graduate Education (Grant No. YCSW2024129)the Guangxi Science and Technology Base and Talent Project (Grant No. Guike AD23026208)。
文摘The cutoff frequency is one of the crucial parameters that characterize the environment. In this paper, we estimate the cutoff frequency of the Ohmic spectral density by applying the π-pulse sequences(both equidistant and optimized)to a quantum probe coupled to a bosonic environment. To demonstrate the precision of cutoff frequency estimation, we theoretically derive the quantum Fisher information(QFI) and quantum signal-to-noise ratio(QSNR) across sub-Ohmic,Ohmic, and super-Ohmic environments, and investigate their behaviors through numerical examples. The results indicate that, compared to the equidistant π-pulse sequence, the optimized π-pulse sequence significantly shortens the time to reach maximum QFI while enhancing the precision of cutoff frequency estimation, particularly in deep sub-Ohmic and deep super-Ohmic environments.
基金financially supported by National Natural Science Foundation Project of China(U22B6002)Prospective Basic Technology Research Project of PetroChina(2021DJ0605)Major Science and Technology Project of PetroChina(No.2023ZZ02).
文摘The high-frequency cycles seen in the carbonates of the Cambrian Xiannüdong Formation in the Sichuan Basin commonly exhibit a certain coupling relationship with the development of grain shoals;this influences the accuracy of reservoir predictions and the selection of favorable zones for hydrocarbon.MATLAB-based wavelet transform technology is employed to analyze the characteristics of the high-frequency sequences in the Xiannüdong Formation,establish a sequence stratigraphic framework,and clarify their vertical and horizontal relationships with the development of grain shoals.The results indicate that using the Dmey wavelet for continuous wavelet transform of gamma ray(GR)curves effectively reflects regional sedimentary cycles.In the Xiannüdong Formation,we identified two third-order sequences,five fourth-order sequences,and ten fifth-order sequences,all of which exhibit a strong correlation with the one-dimensional wavelet curves derived from wavelet transformations.In the sequence stratigraphic framework,early deposition of the Xiannüdong Formation briefly inherited transgressive processes from the Qiongzhusi Formation,and subsequently underwent a long and frequently fluctuating regressive phase.This study elucidates the development characteristics of grain shoals during marine regressions,and identifies lithology primarily as oolitic limestone,oolitic dolostone,doloarenite,silty oolitic limestone,and silty oolitic dolostone.Longitudinally,grain shoals are primarily distributed in the SQ1^(2),SQ2^(1),and SQ2^(2)intervals,and are characterized by the interbedded development of thin and thick layers.They form predominantly during the regressive phase of fourth-order sequences.Planarly,they exhibit a belt-like distribution in the southwest-northeast direction.These findings provide novel insights for conducting high-frequency sequence stratigraphy studies utilizing logging data.They also possess practical implications for constructing high-precision sequence stratigraphic frameworks as well as for predicting the distribution of grain shoals within the study area.
基金funded by the PhD Starting Research Fund in East China Jiaotong University,Grant No.2003423017the National Natural Science Foundation of China(Grant Nos.42304009)。
文摘During 7th-15th October 2023,an earthquake sequence with four MW6.2-6.3 occurred in the Herat region,Afghanistan,causing damage to buildings,fire,and loss of life.The co-seismic deformation induced by the earthquake sequence helps us invert the rupture model of these earthquakes to constrain the geometric characteristics of the Herat fault system,and estimate the future seismic risk at this fault system.In this work,we utilized the line-of-sight(LOS)displacements from Interferometric Synthetic Aperture Radar(InSAR)observations to determine the optimal fault geometry and slip distribution of the 2023 Afghanistan earthquake sequence through a two-step inversion method.Our results indicated that these four MW6.2-6.3 earthquakes ruptured the western and northwestern segments of the Herat fault system,which are dominated by thrust motions.We identified two fault models from InSAR LOS displacement data,with two different strikes,and the same dip angle range of about 35-45°.The source model with the strike of 280.5°has a peak slip of about 2.2 m,a central rupture zone with about 25 km along-strike length,and a depth range of 5-10 km,corresponding to a MW6.67 earthquake.The following source model with the strike direction of about 240°has smaller rupture length and width,and a peak slip of about 2.5 m,corresponding to a MW6.65 earthquake.We also calculated the Coulomb Failure Stress of the Herat fault system around this rupture area caused by this earthquake sequence.Our results indicated that the stress loading at the western segment of the Herat Fault system is greater than the triggering threshold,suggesting that the future seismic risk in this area is at a relatively high stage.In summary,the rupture model of these earthquakes indicates that two unidentified thrust faults between the western and northwestern segments of the Herat fault system are in a compression-stress environment.
基金Supported by Taishan Industry Leading Talent Program in Shandong Province(tscx202306156)Weifang Science and Technology Development Program(2024GX073).
文摘[Objectives]This study was conducted to detect and analyze tomato leaf curl New Delhi virus(ToLCNDV).[Methods]Through PCR detection,sequence analysis,and pathogenicity verification,tomato leaf curl New Delhi virus(ToLCNDV)was identified in zucchini exhibiting systemic disease symptoms during a 2024 outbreak in Qingzhou City,Shandong Province,and was designated as ToLCNDV-SD.[Results]Specific primer amplification showed that all eight diseased samples produced bands of 504 bp(DNA-A)and 892 bp(DNA-B).Sequencing analysis revealed that ToLCNDV-SD DNA-A shared 96.10%homology with an Indonesian melon isolate(LC421834.1),while DNA-B showed 88.31%homology with a Malaysian bitter gourd isolate(MW248678.1).Phylogenetic analysis indicated its closest relationship with Southeast Asian cucurbit-infecting isolates.Friction transmission tests confirmed that the virus could spread mechanically,inducing typical symptoms 14 d after inoculation with positive PCR detection.[Conclusions]This study provides important insights for understanding the epidemic mechanisms and control strategies of ToLCNDV in China.