Sand production often leads to the failure of production equipment on offshore platform.Therefore,a new idea has been put forward,which is installing cyclone or baffle in the internal of the slug catcher for better sa...Sand production often leads to the failure of production equipment on offshore platform.Therefore,a new idea has been put forward,which is installing cyclone or baffle in the internal of the slug catcher for better sand control.In this paper,an experimental study is presented,which mainly includes sand particles accumulation shape,migration law and separation performance.The results suggest that the accumulation area is mainly divided into two zones:the crowded settlement zone and the free settlement zone.The crowded settlement zone has a special shape,which can be characterized by two parameters:accumulation length and accumulation angle.Axial sampling analysis shows obvious particle classification.Median particle size decreases with the increase of the axial distance,and the range of particle size distribution narrows gradually.The separation experiment shows that the gas velocity has the greatest influence on the separation efficiency.When the gas velocity is 14 m·s^ 1,the separation efficiency drops sharply,which can be abated by installing cyclone separator.In addition,the separation efficiency tends to be a constant under different gas velocities by installing baffle with appropriate height.Then the effectiveness and rationality of installing internal components can be strongly proved.All these provide important guidance for maximizing the sand control function of the slug catcher.展开更多
The limitations of swirl separation in removing microfine oil droplets in water have driven the development of hydrocyclone technology coupled with multiphase or multifield techniques.To enhance microfine oil droplets...The limitations of swirl separation in removing microfine oil droplets in water have driven the development of hydrocyclone technology coupled with multiphase or multifield techniques.To enhance microfine oil droplets separation,a novel hydrocyclone separation coupled with fiber coalescence(HCCFC) was designed.The interaction between fiber balls and oil droplets inside the hydrocyclone,including droplet coalescence and breakage,was investigated.The influence of different operating parameters on separation efficiency was discussed.The results showed that fiber balls promoted oil droplet coalescence when the inlet droplet size(D_(43)) was below 22.37 μm but caused droplet breakage above this threshold.The coalescence performance of HCCFC improved with increasing inlet oil content but declined beyond 450 mg·L^(-1).Separation experiments confirmed that HCCFC outperformed conventional hydrocyclone,with separation efficiency increasing by 2.9% to 20.0%.As the fiber ball content and inlet flow rate increased,the separation efficiency showed a trend of first increasing and then decreasing.Additionally,HCCFC's separation efficiency varied with inlet oil droplet size distribution,showing the most significant enhancement when D_(43) was 22.37 μm,where separation efficiency increased by 14.4%.These findings offer insights into the development and application of multiphase coupled with hydrocyclone technology.展开更多
CuBi_(2)O_(4)(CBO)photocathodes hold significant promise for efficient photoelectrochemical(PEC)water splitting due to their favorable band gap and theoretical onset potential.However,their practical application is hi...CuBi_(2)O_(4)(CBO)photocathodes hold significant promise for efficient photoelectrochemical(PEC)water splitting due to their favorable band gap and theoretical onset potential.However,their practical application is hindered by poor charge separation efficiency.Herein,we introduce a characteristic in-situ solution Fe-doping strategy that markedly improves photoelectrochemical performance of CBO,doubling the photocurrent density and achieving an unprecedented 190 mV anodic shift in the onset potential.By integrating with an electrochemical oxidation post-treatment,a record incident photon-to-current efficiency(IPCE)exceeding 40% at 0.6 V vs.RHE under visible light illumination is achieved.The versatility of the doping strategy is demonstrated across CBO photocathodes synthesized by different methods with various morphologies,grain sizes,and crystallinities.Mechanistic studies reveal that the gradient distribution of Fe^(3+)ions generates an internal electric field that facilitates efficient charge separation and increases acceptor density.The strong Fe-O bonding also enhances structural stability against photoinduced corrosion.Notably,our investigation uncovers the non-temperature-dependent nature of CBO photocurrent,indicating that PEC performance enhancement primarily depends on reducing carrier recombination rather than improving bulk conductivity.This work lays the groundwork for future advancements in water splitting performance of CBO photocathodes,offering a complementary strategy to conventional methods for enhancing charge separation efficiency.展开更多
Cell separation using microfluidics has become an effective method to isolate biological contaminants from bodily fluids and cell cultures,such as isolating bacteria contaminants from microalgae cultures and isolating...Cell separation using microfluidics has become an effective method to isolate biological contaminants from bodily fluids and cell cultures,such as isolating bacteria contaminants from microalgae cultures and isolating bacteria contaminants from white blood cells.In this study,bacterial cells were used as a model contaminant in microalgae culture in a passive microfluidics device,which relies on hydrodynamic forces to demonstrate the separation of microalgae from bacteria contaminants in U and W-shaped cross-section spiral microchannel fabricated by defocusing CO_(2) laser ablation.At a flow rate of 0.7 ml/min in the presence of glycine as bacteria chemoattractant,the spiral microfluidics devices with U and W-shaped cross-sections were able to isolate microalgae(Desmodesmus sp.)from bacteria(E.coli)with a high separation efficiency of 92%and 96%respectively.At the same flow rate,in the absence of glycine,the separation efficiency of microalgae for U-and W-shaped cross-sections was 91%and 96%,respectively.It was found that the spiral microchannel device with a W-shaped cross-section with a barrier in the center of the channel showed significantly higher separation efficiency.Spiral microchannel chips with U-or W-shaped cross-sections were easy to fabricate and exhibited high throughput.With these advantages,these devices could be widely applicable to other cell separation applications,such as separating circulating tumor cells from blood.展开更多
Photoelectrochemical(PEC)water splitting is one of the most promising approaches toward achieving the conversion of solar energy to hydrogen.Hematite is a widely applied photoanode material in PEC water splitting beca...Photoelectrochemical(PEC)water splitting is one of the most promising approaches toward achieving the conversion of solar energy to hydrogen.Hematite is a widely applied photoanode material in PEC water splitting because of its appropriate band structure,non-toxicity,high stability,and low cost.Nevertheless,its relatively low photochemical conversion efficiency limits its application,and enhancing its PEC water splitting efficiency remains a challenge.Consequently,increasing efforts have been rendered toward improving the performance of hematite photoanodes.The entire PEC water splitting efficiency typically includes three parts:the photon absorption efficiency,the separation efficiency of the semiconductor bulk,and the surface injection efficiency.This review briefly discusses the recent advances in studies on hematite photoanodes for water splitting,and through the enhancement of the three above-mentioned efficiencies,the corresponding strategies toward improving the PEC performance of hematite are comprehensively discussed and summarized.展开更多
Galena(PbS)and chalcopyrite(CuFeS_(2))are sulfide minerals that exhibit good floatability characteristics.Thus,efficiently separating them via common flotation is challenging.Herein,a new method of surface sulfuric ac...Galena(PbS)and chalcopyrite(CuFeS_(2))are sulfide minerals that exhibit good floatability characteristics.Thus,efficiently separating them via common flotation is challenging.Herein,a new method of surface sulfuric acid corrosion in conjunction with flotation separation was proposed,and the efficient separation of galena and chalcopyrite was successfully realized.Contact angle test results showed a substantial decrease in surface contact angle and a selective inhibition of surface floatability for corroded galena.Meanwhile,the contact angle and floatability of corroded chalcopyrite remained almost unaffected.Scanning electron microscope results confirmed that sulfuric acid corrosion led to the formation of a dense oxide layer on the galena surface,whereas the chalcopyrite surface remained unaltered.X-ray photoelectron spectroscopy results showed that the chemical state of S^(2-)on the surface of corroded galena was oxidized to SO_(4)^(2-).A layer of hydrophilic PbSO4was formed on the surface,leading to a sharp decrease in galena floatability.Meanwhile,new hydrophobic CuS_(2),CuS,and Cu_(1-x)Fe_(1-y)S_(2-z)species exhibiting good floatability were generated on the chalcopyrite surface.Finally,theoretical analysis results were further verified by corrosion–flotation separation experiments.The galena–chalcopyrite mixture was completely separated via flotation separation under appropriate corrosion acidity,corrosion temperature,and corrosion time.A novel approach has been outlined in this study,providing potential applications in the efficient separation of refractory copper–lead sulfide ore.展开更多
One-dimensional silver nanocrystals (AgNCs) have been prepared by a polyol process using sodium hydroxide and nitric acid at a constant silver source concentration. Results indicate that the acidity- basicity plays ...One-dimensional silver nanocrystals (AgNCs) have been prepared by a polyol process using sodium hydroxide and nitric acid at a constant silver source concentration. Results indicate that the acidity- basicity plays an important role in silver-nanocrystal formation. Different morphologies of AgNCs were synthesized by changing the NaOH or HNO3 amount. We demonstrate that nearly monodisperse silver nanocrystals can be separated from polydisperse samples using density gradient centrifugation separation (DGCS). We also demonstrate that the separated AgNCs can be used as substrates for surface- enhanced Raman scattering (SERS) spectroscopy. The separation approach provides a method of improving the nanocrystal quality produced by large-scale synthetic methods.展开更多
The continuous separation of inclusions from aluminum melt flowing in a circular pipe using a high frequency magnetic field was investigated both theoretically and experimentally. The separation efficiency was calcula...The continuous separation of inclusions from aluminum melt flowing in a circular pipe using a high frequency magnetic field was investigated both theoretically and experimentally. The separation efficiency was calculated based on the trajectory method and compared with experimental results. It is found that the separation efficiency is a function ofnondimensional parameters ti . The effective way to improve the separation efficiency is to increase the effective magnetic flux density and decrease the pipe radius, and the value of should be kept about 2 in order to obtain the optimum separation efficiency.展开更多
A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space b...A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space between the two plates is rather narrow to improve the collisions between oil droplets and the plate surface.Oil droplets have an affinity for the plate surface and thus are captured,and then coalesce onto the surface.The droplet size distribution of the residual emulsion resulted from the separation process is remarkably changed.The oil layer on the plate weakens the further separation of oil droplets from the emulsion.Three types of plate materials,polypropylene(PP),polytetrafluoroethylene(PTFE) and nylon 66,were used.It is found that PP is the best in terms of the oil separation efficiency and nylon 66 is the poorest.The interaction between droplets in the emulsion and plate surface is indicated by the spreading coefficient of oil droplet on the plate in aqueous environment,and the influences of formed oil layer and plate material on the separation efficiency are discussed.展开更多
Photocatalytic reduction of CO_(2)into high-value C_(2)H_(4)offers a promising pathway toward carbon neutrality.Due to the continuous 12-electron-proton coupled reactions and the mutual repulsion of reaction intermedi...Photocatalytic reduction of CO_(2)into high-value C_(2)H_(4)offers a promising pathway toward carbon neutrality.Due to the continuous 12-electron-proton coupled reactions and the mutual repulsion of reaction intermediates,achieving highly selective photocatalytic conversion of CO_(2)to C_(2)H_(4)remains challenging.This work synthesized a CuInS_(2)/CuS heterojunction photocatalyst mediated by a sulfur electron bridge via a one-step solvothermal method,achieving a high selectivity for C_(2)H_(4)conversion(98.22%).The sulfur electron bridge minimized the contact energy barrier between CuInS_(2)and CuS to enhance photogenerated carrier separation efficiency,while the asymmetric active sites in CuInS_(2)effectively reduced mutual repulsion of reaction intermediates.This work develops a hybrid catalytic system enabling synergistic regulation of reaction kinetics and thermodynamics,offering an innovative strategy for highly selective photocatalytic CO₂-to-C_(2)H_(4)production.展开更多
To improve the efficiency of iron recovery from steel slag and reduce the wear-and-tear on facilities, a new method was proposed by adding a secondary screen sizer to the magnetic separation process according to grain...To improve the efficiency of iron recovery from steel slag and reduce the wear-and-tear on facilities, a new method was proposed by adding a secondary screen sizer to the magnetic separation process according to grain size distribution of magnetic iron (M-Fe) in the slag. The final recycling efficiency was evaluated by calculating the percentage of recycled M-Fe to the maximum amount of M-Fe that could be recovered. Three types of slags, namely basic oxygen furnace slag, desul- furization slag, and iron ladle slag, were studied, and the results showed that the optimized re- covery efficieneies were 93.20%, 92. 48%, and 85.82% respectively, and the recycling efficien eies were improved by 9.58%, 7.11%, and 6.24% respectively. Furthermore, the abrasion between the mill equipment and the remaining slags was significantly reduced owing to the efficient recovery of larger M-Fe particles. In addition, the using amount of grinding balls was reduced by 0. 46 kg when every 1 t steel slag was processed.展开更多
Using the chemically stable and cost-effective nylon PA6 as a substrate with the help of the high hydrophilicity of microcrystalline cellulose(MCC)and TiO_(2)nanoparticles to build micro-nanostructures on the surface ...Using the chemically stable and cost-effective nylon PA6 as a substrate with the help of the high hydrophilicity of microcrystalline cellulose(MCC)and TiO_(2)nanoparticles to build micro-nanostructures on the surface of the nylon PA6,the superhydrophilic and underwater oleophobic composite membrane was fabricated to achieve the high efficiency of water-oil separation.TiO_(2)nanoparticles wrapped in MCC were evenly dispersed on the composite membrane,and the pore size of the composite membrane decreased with increasing MCC mass fraction.MCC can be tightly bound to the surface of the PA6 membrane because of its excellent filmforming properties and ability to cross-link with PA6.The modification of TiO_(2)and MCC led to a reduction in the surface adhesion of the composite membrane to oil droplets.The separation efficiency of the composite membrane for water-oil emulsions followed the order TiO_(2)@2MCC-PA6>TiO_(2)@MCC-PA6>TiO_(2)-PA6>PA6,and the change in filtration flux was exactly the opposite.TiO_(2)@MCC-PA6 was the best composite membrane for three water-oil emulsions with sodium dodecyl sulfate(SDS),and its separation efficiency was over 96%.The water contact angle and underwater oil contact angle of TiO_(2)@MCC-PA6 changed slightly after it was immersed in acidic and alkaline solutions for 36 h.The filtration flux and separation efficiency of TiO_(2)@MCC-PA6 for n-hexane/SDS/water were still above 3100 L·m^(−2)·h^(−1)·bar^(−1) and 93%,respectively,after 50 cycles.展开更多
The structure, separation principle and feasibility research for a new type of vehicle air filter called the high speed rotary positive air filter were described. The analysis of the experimental data showed that the ...The structure, separation principle and feasibility research for a new type of vehicle air filter called the high speed rotary positive air filter were described. The analysis of the experimental data showed that the principle and structure of it were feasible and it possessed high separation efficiency and great self cleaning ability. Compared with the conventional air filter it also has lower air intake loss. So it is worth further practical research.展开更多
Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore ...Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore use and enhances the economic benefits of enterprises but also increases the ore grade and lessens the grinding cost and tailings production.However,long-term research on intelligent ore sorting equipment found that the factors affecting sorting efficiency mainly include ore information identification technology,equipment sorting actuator,and information processing algorithm.The high precision,strong anti-interference capability,and high speed of these factors guarantee the separation efficiency of intelligent ore sorting equipment.Color ore sorter,X-ray ore transmission sorter,dual-energy X-ray transmission ore sorter,X-ray fluorescence ore sorter,and near-infrared ore sorter have been successfully developed in accordance with the different characteristics of minerals while ensuring the accuracy of equipment sorting and improving the equipment sorting efficiency.With the continuous improvement of mine automation level,the application of online element rapid analysis technology with high speed,high precision,and strong anti-interference capability in intelligent ore sorting equipment will become an inevitable trend of equipment development in the future.Laser-induced breakdown spectroscopy,transientγneutron activation analysis,online Fourier transform infrared spectroscopy,and nuclear magnetic resonance techniques will promote the development of ore sorting equipment.In addition,the improvement and joint application of additional high-speed and high-precision operation algorithms(such as peak area,principal component analysis,artificial neural network,partial least squares,and Monte Carlo library least squares methods)are an essential part of the development of intelligent ore sorting equipment in the future.展开更多
The gas/liquid spiral separator, a key component in the compressed air system, was used to remove liquid and oil from gas stream by centrifugal and gravitational forces. To optimize the design of the separator,the rel...The gas/liquid spiral separator, a key component in the compressed air system, was used to remove liquid and oil from gas stream by centrifugal and gravitational forces. To optimize the design of the separator,the relationship between the performance and structural parameters of separators is studied. Computational fluid dynamics (CFD) method is employed to simulate the flow fields and calculate the pressure drop and separation efficiency of air-liquid spiral separators with different structural parameters. The RSM (Reynolds stress model)turbulence model is used to analyze the highly swirling flow fields while the stochastic trajectory model is used to simulate the traces of liquid droplets in the flow field. A simplified calculation formula of pressure drop in spiral structures is obtained by modifying Darcy's equation and verified by experiment.展开更多
The velocity profiles and separation efficiency curves of a hydrocyclone were predicted by an Euler-Euler approach using a computational fluid dynamics tool ANSYS-CFX 14.5. The Euler-Euler approach is capable of consi...The velocity profiles and separation efficiency curves of a hydrocyclone were predicted by an Euler-Euler approach using a computational fluid dynamics tool ANSYS-CFX 14.5. The Euler-Euler approach is capable of considering the particle-particle interactions and is appropriate for highly laden liquid-solid mixtures. Pre- dicted results were compared and validated with experi- mental results and showed a considerably good agreement. An increase in the particle cut size with increasing solid concentration of the inlet mixture flow was observed and discussed. In addition to this, the erosion on hydrocyclone walls constructed from stainless steel 410, eroded by sand particles (mainly SiOz), was predicted with the Euler-La- grange approach. In this approach, the abrasive solid particles were traced in a Lagrangian reference frame as discrete particles. The increases in the input flow velocity, solid concentration, and the particle size have increased the erosion at the upper part of the cylindrical body of the hydrocyclone, where the tangential inlet flow enters the hydrocyclone. The erosion density in the area between the cylindrical to conical body area, in comparison to other parts of the hydrocyclone, also increased considerably. Moreover, it was observed that an increase in the particle shape factor from 0.1 to 1.0 leads to a decrease of almost 70 % in the average erosion density of the hydrocyclone wall surfaces.展开更多
Surprisingly,no investigation has been explored relationships between operating variables and metallurgical responses of coal column flotation(CF) circuits based on industrial databases for under operation plants.As a...Surprisingly,no investigation has been explored relationships between operating variables and metallurgical responses of coal column flotation(CF) circuits based on industrial databases for under operation plants.As a novel approach,this study implemented a conscious-lab "CL" for filling this gap.In this approach,for developing the CL dedicated to an industrial CF circuit,SHapley Additive explanations(SHAP) and extreme gradient boosting(XGBoost) were powerful unique machine learning systems for the first time considered.These explainable artificial intelligence models could effectively convert the dataset to a basis that improves human capabilities for better understanding,reasoning,and planning the unit.SHAP could provide precise multivariable correlation assessments between the CF dataset by using the Tabas Parvadeh coal plant(Kerman,Iran),and showed the importance of solid percentage and washing water on the metallurgical responses of the coal CF circuit.XGBoost could predict metallurgical responses(R-square> 0.88) based on operating variables that showed quite higher accuracy than typical modeling methods(Random Forest and support vector regression).展开更多
The cyclone separator is an important separation device.This paper presents a new type of embedded two-stage cyclone,which includes a 2 nd-stage cyclone(internal traditional cyclone)with multiple inlets and a 1 st-sta...The cyclone separator is an important separation device.This paper presents a new type of embedded two-stage cyclone,which includes a 2 nd-stage cyclone(internal traditional cyclone)with multiple inlets and a 1 st-stage cyclone(outer cylinder)that unifies the 2 nd-stage cyclone inlets into one inlet.The Taguchi experimental method was used to study the two-stage cyclone separator’s inlet area on its performance.Studies have shown that the increase of the 1 st-stage cyclone inlet area and the increase in the number of 2 nd-stage cyclone inlets(N)positively affect reducing the pressure drop and a negative effect on efficiency.It is recommended to use 2 S(the original 1 st-stage cyclone inlet area)of the 1 st-stage cyclone inlet area and 2 N of the 2 nd-stage cyclone inlets when separating fine particles.Compared with a traditional cyclone,the pressure drop is reduced by 1303 Pa,the mass separation efficiency(Eq)is increased by 0.56%,and the number separation efficiency(En)is increased by 2.05%.When separating larger particles,it is recommended to use 2 S of the 1 st-stage cyclone inlet area and 4 N of the 2 nd-stage cyclone inlets.Compared with a traditional cyclone,although Endecreases slightly,the pressure drop is reduced by 3055 Pa,and the Eqis increased by 0.56%.The research results provide new insight into the design of the cyclone.展开更多
In a passive ultra-high frequency(UHF)radio frequency identification(RFID)system,the recovery of collided tag signals on a physical layer can enhance identification efficiency.However,frequency drift is very common in...In a passive ultra-high frequency(UHF)radio frequency identification(RFID)system,the recovery of collided tag signals on a physical layer can enhance identification efficiency.However,frequency drift is very common in UHF RFID systems,and will have an influence on the recovery on the physical layer.To address the problem of recovery with the frequency drift,this paper adopts a radial basis function(RBF)network to separate the collision signals,and decode the signals via FM0 to recovery collided RFID tags.Numerical results show that the method in this paper has better performance of symbol error rate(SER)and separation efficiency compared to conventional methods when frequency drift occurs.展开更多
Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alt...Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alternative process that could be used for the beneficiation of ultra-fine material. This process has not been extensively used commercially because of its complex dependency on process parameters. In this paper, a selective flocculation process, using synthetic mixtures of hematite and kaolinite in different ratios, was attempted, and the ad-sorption mechanism was investigated by Fourier transform infrared (FTIR) spectroscopy. A three-layer artificial neural network (ANN) model (4?4?3) was used to predict the separation performance of the process in terms of grade, Fe recovery, and separation efficiency. The model values were in good agreement with experimental values.展开更多
文摘Sand production often leads to the failure of production equipment on offshore platform.Therefore,a new idea has been put forward,which is installing cyclone or baffle in the internal of the slug catcher for better sand control.In this paper,an experimental study is presented,which mainly includes sand particles accumulation shape,migration law and separation performance.The results suggest that the accumulation area is mainly divided into two zones:the crowded settlement zone and the free settlement zone.The crowded settlement zone has a special shape,which can be characterized by two parameters:accumulation length and accumulation angle.Axial sampling analysis shows obvious particle classification.Median particle size decreases with the increase of the axial distance,and the range of particle size distribution narrows gradually.The separation experiment shows that the gas velocity has the greatest influence on the separation efficiency.When the gas velocity is 14 m·s^ 1,the separation efficiency drops sharply,which can be abated by installing cyclone separator.In addition,the separation efficiency tends to be a constant under different gas velocities by installing baffle with appropriate height.Then the effectiveness and rationality of installing internal components can be strongly proved.All these provide important guidance for maximizing the sand control function of the slug catcher.
基金sponsored by the National Science Fund for Distinguished Young Scholars,China(22225804)the National Natural Science Foundation of China(22078102,22408101,22308105)。
文摘The limitations of swirl separation in removing microfine oil droplets in water have driven the development of hydrocyclone technology coupled with multiphase or multifield techniques.To enhance microfine oil droplets separation,a novel hydrocyclone separation coupled with fiber coalescence(HCCFC) was designed.The interaction between fiber balls and oil droplets inside the hydrocyclone,including droplet coalescence and breakage,was investigated.The influence of different operating parameters on separation efficiency was discussed.The results showed that fiber balls promoted oil droplet coalescence when the inlet droplet size(D_(43)) was below 22.37 μm but caused droplet breakage above this threshold.The coalescence performance of HCCFC improved with increasing inlet oil content but declined beyond 450 mg·L^(-1).Separation experiments confirmed that HCCFC outperformed conventional hydrocyclone,with separation efficiency increasing by 2.9% to 20.0%.As the fiber ball content and inlet flow rate increased,the separation efficiency showed a trend of first increasing and then decreasing.Additionally,HCCFC's separation efficiency varied with inlet oil droplet size distribution,showing the most significant enhancement when D_(43) was 22.37 μm,where separation efficiency increased by 14.4%.These findings offer insights into the development and application of multiphase coupled with hydrocyclone technology.
基金financial support by the National Natural Science Foundation of China(NSFC,Grant No.22379153 and 22109128)the Ningbo Key Research and Development Project(2023Z147)the Ningbo 3315 Program。
文摘CuBi_(2)O_(4)(CBO)photocathodes hold significant promise for efficient photoelectrochemical(PEC)water splitting due to their favorable band gap and theoretical onset potential.However,their practical application is hindered by poor charge separation efficiency.Herein,we introduce a characteristic in-situ solution Fe-doping strategy that markedly improves photoelectrochemical performance of CBO,doubling the photocurrent density and achieving an unprecedented 190 mV anodic shift in the onset potential.By integrating with an electrochemical oxidation post-treatment,a record incident photon-to-current efficiency(IPCE)exceeding 40% at 0.6 V vs.RHE under visible light illumination is achieved.The versatility of the doping strategy is demonstrated across CBO photocathodes synthesized by different methods with various morphologies,grain sizes,and crystallinities.Mechanistic studies reveal that the gradient distribution of Fe^(3+)ions generates an internal electric field that facilitates efficient charge separation and increases acceptor density.The strong Fe-O bonding also enhances structural stability against photoinduced corrosion.Notably,our investigation uncovers the non-temperature-dependent nature of CBO photocurrent,indicating that PEC performance enhancement primarily depends on reducing carrier recombination rather than improving bulk conductivity.This work lays the groundwork for future advancements in water splitting performance of CBO photocathodes,offering a complementary strategy to conventional methods for enhancing charge separation efficiency.
文摘Cell separation using microfluidics has become an effective method to isolate biological contaminants from bodily fluids and cell cultures,such as isolating bacteria contaminants from microalgae cultures and isolating bacteria contaminants from white blood cells.In this study,bacterial cells were used as a model contaminant in microalgae culture in a passive microfluidics device,which relies on hydrodynamic forces to demonstrate the separation of microalgae from bacteria contaminants in U and W-shaped cross-section spiral microchannel fabricated by defocusing CO_(2) laser ablation.At a flow rate of 0.7 ml/min in the presence of glycine as bacteria chemoattractant,the spiral microfluidics devices with U and W-shaped cross-sections were able to isolate microalgae(Desmodesmus sp.)from bacteria(E.coli)with a high separation efficiency of 92%and 96%respectively.At the same flow rate,in the absence of glycine,the separation efficiency of microalgae for U-and W-shaped cross-sections was 91%and 96%,respectively.It was found that the spiral microchannel device with a W-shaped cross-section with a barrier in the center of the channel showed significantly higher separation efficiency.Spiral microchannel chips with U-or W-shaped cross-sections were easy to fabricate and exhibited high throughput.With these advantages,these devices could be widely applicable to other cell separation applications,such as separating circulating tumor cells from blood.
文摘Photoelectrochemical(PEC)water splitting is one of the most promising approaches toward achieving the conversion of solar energy to hydrogen.Hematite is a widely applied photoanode material in PEC water splitting because of its appropriate band structure,non-toxicity,high stability,and low cost.Nevertheless,its relatively low photochemical conversion efficiency limits its application,and enhancing its PEC water splitting efficiency remains a challenge.Consequently,increasing efforts have been rendered toward improving the performance of hematite photoanodes.The entire PEC water splitting efficiency typically includes three parts:the photon absorption efficiency,the separation efficiency of the semiconductor bulk,and the surface injection efficiency.This review briefly discusses the recent advances in studies on hematite photoanodes for water splitting,and through the enhancement of the three above-mentioned efficiencies,the corresponding strategies toward improving the PEC performance of hematite are comprehensively discussed and summarized.
基金financially supported by the National Natural Science Foundation of China(No.52064027)Yunnan Major Scientific and Technological Projects,China(No.202202AG050015)。
文摘Galena(PbS)and chalcopyrite(CuFeS_(2))are sulfide minerals that exhibit good floatability characteristics.Thus,efficiently separating them via common flotation is challenging.Herein,a new method of surface sulfuric acid corrosion in conjunction with flotation separation was proposed,and the efficient separation of galena and chalcopyrite was successfully realized.Contact angle test results showed a substantial decrease in surface contact angle and a selective inhibition of surface floatability for corroded galena.Meanwhile,the contact angle and floatability of corroded chalcopyrite remained almost unaffected.Scanning electron microscope results confirmed that sulfuric acid corrosion led to the formation of a dense oxide layer on the galena surface,whereas the chalcopyrite surface remained unaltered.X-ray photoelectron spectroscopy results showed that the chemical state of S^(2-)on the surface of corroded galena was oxidized to SO_(4)^(2-).A layer of hydrophilic PbSO4was formed on the surface,leading to a sharp decrease in galena floatability.Meanwhile,new hydrophobic CuS_(2),CuS,and Cu_(1-x)Fe_(1-y)S_(2-z)species exhibiting good floatability were generated on the chalcopyrite surface.Finally,theoretical analysis results were further verified by corrosion–flotation separation experiments.The galena–chalcopyrite mixture was completely separated via flotation separation under appropriate corrosion acidity,corrosion temperature,and corrosion time.A novel approach has been outlined in this study,providing potential applications in the efficient separation of refractory copper–lead sulfide ore.
基金supported by the National Natural Science Foundation of China(Nos.21205127,21203226 and 21377063)
文摘One-dimensional silver nanocrystals (AgNCs) have been prepared by a polyol process using sodium hydroxide and nitric acid at a constant silver source concentration. Results indicate that the acidity- basicity plays an important role in silver-nanocrystal formation. Different morphologies of AgNCs were synthesized by changing the NaOH or HNO3 amount. We demonstrate that nearly monodisperse silver nanocrystals can be separated from polydisperse samples using density gradient centrifugation separation (DGCS). We also demonstrate that the separated AgNCs can be used as substrates for surface- enhanced Raman scattering (SERS) spectroscopy. The separation approach provides a method of improving the nanocrystal quality produced by large-scale synthetic methods.
基金This work was supported by the National Natural Science Foundation of China(grant No.59871029)the National Key Fundamental Research Project(973 Project)(No.G 1999064900-4).
文摘The continuous separation of inclusions from aluminum melt flowing in a circular pipe using a high frequency magnetic field was investigated both theoretically and experimentally. The separation efficiency was calculated based on the trajectory method and compared with experimental results. It is found that the separation efficiency is a function ofnondimensional parameters ti . The effective way to improve the separation efficiency is to increase the effective magnetic flux density and decrease the pipe radius, and the value of should be kept about 2 in order to obtain the optimum separation efficiency.
基金Supported by the Eleventh Five-Year Plan of national support (2007BAI26B03-04)
文摘A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space between the two plates is rather narrow to improve the collisions between oil droplets and the plate surface.Oil droplets have an affinity for the plate surface and thus are captured,and then coalesce onto the surface.The droplet size distribution of the residual emulsion resulted from the separation process is remarkably changed.The oil layer on the plate weakens the further separation of oil droplets from the emulsion.Three types of plate materials,polypropylene(PP),polytetrafluoroethylene(PTFE) and nylon 66,were used.It is found that PP is the best in terms of the oil separation efficiency and nylon 66 is the poorest.The interaction between droplets in the emulsion and plate surface is indicated by the spreading coefficient of oil droplet on the plate in aqueous environment,and the influences of formed oil layer and plate material on the separation efficiency are discussed.
文摘Photocatalytic reduction of CO_(2)into high-value C_(2)H_(4)offers a promising pathway toward carbon neutrality.Due to the continuous 12-electron-proton coupled reactions and the mutual repulsion of reaction intermediates,achieving highly selective photocatalytic conversion of CO_(2)to C_(2)H_(4)remains challenging.This work synthesized a CuInS_(2)/CuS heterojunction photocatalyst mediated by a sulfur electron bridge via a one-step solvothermal method,achieving a high selectivity for C_(2)H_(4)conversion(98.22%).The sulfur electron bridge minimized the contact energy barrier between CuInS_(2)and CuS to enhance photogenerated carrier separation efficiency,while the asymmetric active sites in CuInS_(2)effectively reduced mutual repulsion of reaction intermediates.This work develops a hybrid catalytic system enabling synergistic regulation of reaction kinetics and thermodynamics,offering an innovative strategy for highly selective photocatalytic CO₂-to-C_(2)H_(4)production.
基金the funding of Chongqing Application and Development Project of China(cstc2014yykfB100007)
文摘To improve the efficiency of iron recovery from steel slag and reduce the wear-and-tear on facilities, a new method was proposed by adding a secondary screen sizer to the magnetic separation process according to grain size distribution of magnetic iron (M-Fe) in the slag. The final recycling efficiency was evaluated by calculating the percentage of recycled M-Fe to the maximum amount of M-Fe that could be recovered. Three types of slags, namely basic oxygen furnace slag, desul- furization slag, and iron ladle slag, were studied, and the results showed that the optimized re- covery efficieneies were 93.20%, 92. 48%, and 85.82% respectively, and the recycling efficien eies were improved by 9.58%, 7.11%, and 6.24% respectively. Furthermore, the abrasion between the mill equipment and the remaining slags was significantly reduced owing to the efficient recovery of larger M-Fe particles. In addition, the using amount of grinding balls was reduced by 0. 46 kg when every 1 t steel slag was processed.
基金support of the Scientific Research Funds of Huaqiao University(No.605-50Y17073),Xiamen,China.
文摘Using the chemically stable and cost-effective nylon PA6 as a substrate with the help of the high hydrophilicity of microcrystalline cellulose(MCC)and TiO_(2)nanoparticles to build micro-nanostructures on the surface of the nylon PA6,the superhydrophilic and underwater oleophobic composite membrane was fabricated to achieve the high efficiency of water-oil separation.TiO_(2)nanoparticles wrapped in MCC were evenly dispersed on the composite membrane,and the pore size of the composite membrane decreased with increasing MCC mass fraction.MCC can be tightly bound to the surface of the PA6 membrane because of its excellent filmforming properties and ability to cross-link with PA6.The modification of TiO_(2)and MCC led to a reduction in the surface adhesion of the composite membrane to oil droplets.The separation efficiency of the composite membrane for water-oil emulsions followed the order TiO_(2)@2MCC-PA6>TiO_(2)@MCC-PA6>TiO_(2)-PA6>PA6,and the change in filtration flux was exactly the opposite.TiO_(2)@MCC-PA6 was the best composite membrane for three water-oil emulsions with sodium dodecyl sulfate(SDS),and its separation efficiency was over 96%.The water contact angle and underwater oil contact angle of TiO_(2)@MCC-PA6 changed slightly after it was immersed in acidic and alkaline solutions for 36 h.The filtration flux and separation efficiency of TiO_(2)@MCC-PA6 for n-hexane/SDS/water were still above 3100 L·m^(−2)·h^(−1)·bar^(−1) and 93%,respectively,after 50 cycles.
文摘The structure, separation principle and feasibility research for a new type of vehicle air filter called the high speed rotary positive air filter were described. The analysis of the experimental data showed that the principle and structure of it were feasible and it possessed high separation efficiency and great self cleaning ability. Compared with the conventional air filter it also has lower air intake loss. So it is worth further practical research.
基金supported by the National Science and Technology Support Program of China(No.2012BAC11B07)the Jiangxi Science and Technology Innovation Base Plan(No.20212BCD42017)。
文摘Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore use and enhances the economic benefits of enterprises but also increases the ore grade and lessens the grinding cost and tailings production.However,long-term research on intelligent ore sorting equipment found that the factors affecting sorting efficiency mainly include ore information identification technology,equipment sorting actuator,and information processing algorithm.The high precision,strong anti-interference capability,and high speed of these factors guarantee the separation efficiency of intelligent ore sorting equipment.Color ore sorter,X-ray ore transmission sorter,dual-energy X-ray transmission ore sorter,X-ray fluorescence ore sorter,and near-infrared ore sorter have been successfully developed in accordance with the different characteristics of minerals while ensuring the accuracy of equipment sorting and improving the equipment sorting efficiency.With the continuous improvement of mine automation level,the application of online element rapid analysis technology with high speed,high precision,and strong anti-interference capability in intelligent ore sorting equipment will become an inevitable trend of equipment development in the future.Laser-induced breakdown spectroscopy,transientγneutron activation analysis,online Fourier transform infrared spectroscopy,and nuclear magnetic resonance techniques will promote the development of ore sorting equipment.In addition,the improvement and joint application of additional high-speed and high-precision operation algorithms(such as peak area,principal component analysis,artificial neural network,partial least squares,and Monte Carlo library least squares methods)are an essential part of the development of intelligent ore sorting equipment in the future.
文摘The gas/liquid spiral separator, a key component in the compressed air system, was used to remove liquid and oil from gas stream by centrifugal and gravitational forces. To optimize the design of the separator,the relationship between the performance and structural parameters of separators is studied. Computational fluid dynamics (CFD) method is employed to simulate the flow fields and calculate the pressure drop and separation efficiency of air-liquid spiral separators with different structural parameters. The RSM (Reynolds stress model)turbulence model is used to analyze the highly swirling flow fields while the stochastic trajectory model is used to simulate the traces of liquid droplets in the flow field. A simplified calculation formula of pressure drop in spiral structures is obtained by modifying Darcy's equation and verified by experiment.
基金“Stiftung Rheinland-Pfalz fur Innovation,Mainz,Germany,”for financial support
文摘The velocity profiles and separation efficiency curves of a hydrocyclone were predicted by an Euler-Euler approach using a computational fluid dynamics tool ANSYS-CFX 14.5. The Euler-Euler approach is capable of considering the particle-particle interactions and is appropriate for highly laden liquid-solid mixtures. Pre- dicted results were compared and validated with experi- mental results and showed a considerably good agreement. An increase in the particle cut size with increasing solid concentration of the inlet mixture flow was observed and discussed. In addition to this, the erosion on hydrocyclone walls constructed from stainless steel 410, eroded by sand particles (mainly SiOz), was predicted with the Euler-La- grange approach. In this approach, the abrasive solid particles were traced in a Lagrangian reference frame as discrete particles. The increases in the input flow velocity, solid concentration, and the particle size have increased the erosion at the upper part of the cylindrical body of the hydrocyclone, where the tangential inlet flow enters the hydrocyclone. The erosion density in the area between the cylindrical to conical body area, in comparison to other parts of the hydrocyclone, also increased considerably. Moreover, it was observed that an increase in the particle shape factor from 0.1 to 1.0 leads to a decrease of almost 70 % in the average erosion density of the hydrocyclone wall surfaces.
文摘Surprisingly,no investigation has been explored relationships between operating variables and metallurgical responses of coal column flotation(CF) circuits based on industrial databases for under operation plants.As a novel approach,this study implemented a conscious-lab "CL" for filling this gap.In this approach,for developing the CL dedicated to an industrial CF circuit,SHapley Additive explanations(SHAP) and extreme gradient boosting(XGBoost) were powerful unique machine learning systems for the first time considered.These explainable artificial intelligence models could effectively convert the dataset to a basis that improves human capabilities for better understanding,reasoning,and planning the unit.SHAP could provide precise multivariable correlation assessments between the CF dataset by using the Tabas Parvadeh coal plant(Kerman,Iran),and showed the importance of solid percentage and washing water on the metallurgical responses of the coal CF circuit.XGBoost could predict metallurgical responses(R-square> 0.88) based on operating variables that showed quite higher accuracy than typical modeling methods(Random Forest and support vector regression).
基金financially supported by the National Key Research and Development Program of China(2016YFC0801700)the Project of the National Natural Science Foundation of China(51604018)the Basic Research Funding of the China Academy of Safety Science and Technology(2019JBKY11 and 2019JBKY04)。
文摘The cyclone separator is an important separation device.This paper presents a new type of embedded two-stage cyclone,which includes a 2 nd-stage cyclone(internal traditional cyclone)with multiple inlets and a 1 st-stage cyclone(outer cylinder)that unifies the 2 nd-stage cyclone inlets into one inlet.The Taguchi experimental method was used to study the two-stage cyclone separator’s inlet area on its performance.Studies have shown that the increase of the 1 st-stage cyclone inlet area and the increase in the number of 2 nd-stage cyclone inlets(N)positively affect reducing the pressure drop and a negative effect on efficiency.It is recommended to use 2 S(the original 1 st-stage cyclone inlet area)of the 1 st-stage cyclone inlet area and 2 N of the 2 nd-stage cyclone inlets when separating fine particles.Compared with a traditional cyclone,the pressure drop is reduced by 1303 Pa,the mass separation efficiency(Eq)is increased by 0.56%,and the number separation efficiency(En)is increased by 2.05%.When separating larger particles,it is recommended to use 2 S of the 1 st-stage cyclone inlet area and 4 N of the 2 nd-stage cyclone inlets.Compared with a traditional cyclone,although Endecreases slightly,the pressure drop is reduced by 3055 Pa,and the Eqis increased by 0.56%.The research results provide new insight into the design of the cyclone.
基金supported by the National Natural Science Foundation of China(61762093)the 17th Batches of Young and Middle-aged Leaders in Academic and Technical Reserved Talents Project of Yunnan Province(2014HB019)+1 种基金the Key Applied and Basic Research Foundation of Yunnan Province(2018FA036)the Program for Innovative Research Team(in Science and Technology)in University of Yunnan Province。
文摘In a passive ultra-high frequency(UHF)radio frequency identification(RFID)system,the recovery of collided tag signals on a physical layer can enhance identification efficiency.However,frequency drift is very common in UHF RFID systems,and will have an influence on the recovery on the physical layer.To address the problem of recovery with the frequency drift,this paper adopts a radial basis function(RBF)network to separate the collision signals,and decode the signals via FM0 to recovery collided RFID tags.Numerical results show that the method in this paper has better performance of symbol error rate(SER)and separation efficiency compared to conventional methods when frequency drift occurs.
基金the funding given by Council of Scientific and Industrial Research(CSIR)India through project NWP-31 for this project
文摘Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alternative process that could be used for the beneficiation of ultra-fine material. This process has not been extensively used commercially because of its complex dependency on process parameters. In this paper, a selective flocculation process, using synthetic mixtures of hematite and kaolinite in different ratios, was attempted, and the ad-sorption mechanism was investigated by Fourier transform infrared (FTIR) spectroscopy. A three-layer artificial neural network (ANN) model (4?4?3) was used to predict the separation performance of the process in terms of grade, Fe recovery, and separation efficiency. The model values were in good agreement with experimental values.