The presence of chirality,a fundamental attribute found in nature,is of great significance in the field of pharmaceutical science.Chiral drugs are unique in that their molecular structure is non-superimposable on its ...The presence of chirality,a fundamental attribute found in nature,is of great significance in the field of pharmaceutical science.Chiral drugs are unique in that their molecular structure is non-superimposable on its mirror image.This stereoisomerism significantly impacts the functionality,metabolic pathway,effectiveness,and safety of chiral medications.The enantiomers of chiral drugs can exhibit diverse pharmacological effects in the human body.As a result,it is essential to separate and purify chiral drugs effectively.Despite the abundance of reports on chiral drug separation membranes,there is a dearth of comprehensive reviews.This paper aims to fill this gap by providing a thorough review from a materials perspective,with a focus on the design and construction of chiral drug separation membranes.Furthermore,it systematically analyzes the separation mechanisms employed by these membranes.The paper also delves into the challenges and prospects related to chiral drug separation membranes,with the intention of imparting valuable insights for further research and development in this field.展开更多
We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of ...We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.展开更多
Metal-Organic Frameworks(MOFs)have emerged as promising materials for gas adsorption and separation due to their exceptional surface area,tunable porosity,and versatility in functionalization.This paper explores the m...Metal-Organic Frameworks(MOFs)have emerged as promising materials for gas adsorption and separation due to their exceptional surface area,tunable porosity,and versatility in functionalization.This paper explores the mechanisms of gas adsorption in MOFs,including physical adsorption,chemisorption,and synergistic effects,which contribute to their efficiency in capturing and separating gases.The applications of MOFs in key areas such as carbon dioxide capture,hydrogen storage,natural gas separation,and air purification are discussed,highlighting their potential to address pressing environmental and energy challenges.Additionally,the use of MOFs in selective gas separation,membranes,and adsorption-based technologies like Pressure Swing Adsorption(PSA)and Vacuum Swing Adsorption(VSA)is explored,emphasizing their advantages over traditional materials.Despite challenges related to scalability,stability,and cost,MOFs hold great promise for advancing gas separation technologies in the near future,offering more efficient,sustainable,and environmentally friendly solutions.展开更多
The limitations of swirl separation in removing microfine oil droplets in water have driven the development of hydrocyclone technology coupled with multiphase or multifield techniques.To enhance microfine oil droplets...The limitations of swirl separation in removing microfine oil droplets in water have driven the development of hydrocyclone technology coupled with multiphase or multifield techniques.To enhance microfine oil droplets separation,a novel hydrocyclone separation coupled with fiber coalescence(HCCFC) was designed.The interaction between fiber balls and oil droplets inside the hydrocyclone,including droplet coalescence and breakage,was investigated.The influence of different operating parameters on separation efficiency was discussed.The results showed that fiber balls promoted oil droplet coalescence when the inlet droplet size(D_(43)) was below 22.37 μm but caused droplet breakage above this threshold.The coalescence performance of HCCFC improved with increasing inlet oil content but declined beyond 450 mg·L^(-1).Separation experiments confirmed that HCCFC outperformed conventional hydrocyclone,with separation efficiency increasing by 2.9% to 20.0%.As the fiber ball content and inlet flow rate increased,the separation efficiency showed a trend of first increasing and then decreasing.Additionally,HCCFC's separation efficiency varied with inlet oil droplet size distribution,showing the most significant enhancement when D_(43) was 22.37 μm,where separation efficiency increased by 14.4%.These findings offer insights into the development and application of multiphase coupled with hydrocyclone technology.展开更多
The crisis of excessive increase in CO_(2)emissions has quickly become a serious issue and requires low-cost and bio-compatible solutions.The employee of membrane technology for CO_(2)gas separation has garnered signi...The crisis of excessive increase in CO_(2)emissions has quickly become a serious issue and requires low-cost and bio-compatible solutions.The employee of membrane technology for CO_(2)gas separation has garnered significant interest among researchers.However,this method encounters challenges related to selectivity and permeability.Therefore,modifying and reinforcing the polymer membranes to improve gas separation performance seems essential.Among the various methods for polymer membrane modification,modification with magnesium-based fillers to prepare a mixed matrix membrane(MMM)is considered an efficient method.Owing to magnesium metal's low weight,low density,high strength,and good selectivity,magnesium-based materials(Mg-based materials)have more porosity,higher available surface area,more adsorption sites,lighter weight,and more gas absorption tendency than other fillers,which makes them an attractive choice for the preparation of gas separation MMMs.This research deals with the introduction of Mg-based materials,various methods of synthesis of Mg-based materials,different methods of introducing Mg-based materials into the membrane matrix,and their effect on the performance of MMMs in CO_(2)gas separation applications.Therefore,this review can provide researchers with light horizons in using the high potential of Mg-based materials as efficient fillers in MMMs to achieve excellent permeability and selectivity and generally improve their performance in CO_(2)gas separation applications.展开更多
Pyridine(Py) and 3-methylpyridine(3-MP) are crucial intermediates in chemical industrial processes.Here,we provide a simple and energy-efficient approach for the isolation of Py and 3-MP by employing crystalline cucur...Pyridine(Py) and 3-methylpyridine(3-MP) are crucial intermediates in chemical industrial processes.Here,we provide a simple and energy-efficient approach for the isolation of Py and 3-MP by employing crystalline cucurbit[6]uril(Q[6]).The crystal exhibit high selectivity for Py from the mixture of Py and 3-MP in both vapor and liquid phases,with separation purities close to 100%.The selectivity is attributed to the varying stability of the host-vip complexes after the absorption of Py or 3-MP,as revealed by the single-crystal structure analysis.ITC experimental results and DFT calculations indicate that,compared to3-MP,Q[6] has a higher binding strength and lower binding energy with Py.In addition,pyridine can be removed from the Q[6] cavity through vacuum heating or organic solvent immersion,enabling Q[6]reuse via reversible vip loading.This method offers a promising approach for high-purity Py and 3-MP separation with significant economic and environmental benefits.展开更多
The production of high-purity H_(2) is the building block of hydrogen economy,which can greatly promote the construction of related technologies and infrastructure.Efficient H_(2)/CH_(4) separation is a necessary unit...The production of high-purity H_(2) is the building block of hydrogen economy,which can greatly promote the construction of related technologies and infrastructure.Efficient H_(2)/CH_(4) separation is a necessary unit in producing high-purity energy and reducing greenhouse gas emissions,which can meet the industrial demand and help to address the energy issue and achieve global carbon neutrality goals.Membrane separation technology,as a promising strategy for H_(2) purification,has attracted much attention due to its high efficiency,energy conservation and versatile applications.This article reviews the latest research advances in the high-performance membranes for H_(2)/CH_(4) separation,and elu-cidates the effect of membrane materials,preparation methods and membrane structure on separation performance from the perspective of separation mechanisms.It also summarized the essential aspects of membrane design,such as microstructural regulation,multiphase coupling,the optimal usage conditions and simple analysis of economic benefits.Finally,the current challenges and future directions of membranes for H_(2)/CH_(4) separation were discussed,intending to provide in-depth reference and inspiration for the theoretical research and practical application of membrane separation technology.展开更多
Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic natu...Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation.展开更多
Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger in...Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.展开更多
Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associa...Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associated resources.Traditional utilization methods suffered the issues of low REEs leaching efficiency,huge amount of CaSO_(4)saturated wastewater and high recovery cost.To solve these issues,this study investigated the occurrence of REEs in PG and the leaching of REEs.The results show that REEs in PG are in the forms of(1)REEs mineral inclusions,(2)REEs isomorphous substitution of Ca^(2+)in gypsum lattice,(3)dispersed soluble REEs salts.Acid leaching results demonstrate that(1)the dissolution of gypsum matrix is the control factor of REEs leaching;(2)H_(2)SO_(4)is a promising leachant considering the recycle of leachate;(3)the gypsum matrix suffers a recrystallization during the acid leaching and releases the soluble REEs from PG to aqueous solution.For the recovery of the undissolved REEs mineral inclusions,wet sieving concentrated 37.1 wt%of the REEs in a 10.7 wt%mass,increasing REEs content from 309 to 1071 ppm.Finally,a green process combining gravity separation and hydrometallurgy is proposed.This process owns the merits of wastewater free,considerable REEs recovery(about 10%increase compared with traditional processes),excellent gypsum purification(>95 wt%CaSO_(4)·2H_(2)O,with<0.06 wt%of soluble P_(2)O_(5) and<0.015 wt%of soluble F)and reagent saving(about 2/3less reagent consumption than non-cyclical leaching).展开更多
The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical ...The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical output still remains a significant challenge.Here,a strategy of inducing constrained phase separation on single nanofibers via shear force was proposed.Employing electrospinning technology,a polyacrylonitrile/polyvinylidene difluoride(PAN/PVDF)nanofibrous membrane was fabricated in one step,which enabled simultaneous piezoelectric and triboelectric conversion within a single-layer membrane.Each nanofiber contained independent components of PAN and PVDF and exhibited a rough surface.The abundant frictional contact points formed between these heterogeneous components contributed to an enhanced endogenous triboelectric output,showcasing an excellent synergistic effect of piezoelectric and triboelectric response in the nanofibrous membrane.Additionally,the component mass ratio influenced the microstructure,piezoelectric conformation and piezoelectric performance of the PAN/PVDF nanofibrous membranes.Through comprehensive performance comparison,the optimal mass ratio of PAN to PVDF was determined to be 9∶1.The piezoelectric devices made of the optimal PAN/PVDF nanofibrous membranes with rough nanofiber surfaces generated an output voltage of 20 V,which was about 1.8 times that of the smooth one at the same component mass ratio.The strategy of constrained phase separation on the surface of individual nanofibers provides a new approach to enhance the output performance of single-layer piezoelectric nanofibrous materials.展开更多
Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltr...Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications.展开更多
Separating oil/water mixtures via superhydrophobic stainless steel mesh(SSM)is a kind of efficient methods of treating oily wastewater,and the superhydrophobic SSM with a low cost,simple fabrication process and robust...Separating oil/water mixtures via superhydrophobic stainless steel mesh(SSM)is a kind of efficient methods of treating oily wastewater,and the superhydrophobic SSM with a low cost,simple fabrication process and robust usability remains a challenge.Herein,urushiol-based benzoxazine(U-D)with a strong substrate adhesion and low surface free energy was used to anchor SiO_(2) particles on the SSM surface to obtain a durable superhydrophobic SSM(PU-D/SiO_(2)/SSM)through a simple dip-coating process,meanwhile,epoxy resin was also introduced to further improve the adhesion between coating and SSM.PU-D/SiO_(2)/SSM could successfully separate various immiscible oil-water mixtures with a separation efficiency of over 96%and a flux up to 27100 L/m^(2) h only by gravity,respectively.Especially,the modified SSM could effectively remove water from water-in-oil emulsion with a separation efficiency of 99.7%.Moreover,PU-D/SiO_(2)/SSM had an outstanding reusability,whose water contact angle and separation efficiency only slightly decreased after 20 cycles of separating oil/water mixture.In addition,the modified SSM also displayed a satisfactory abrasion resistance,chemical stability and self-cleaning property.Thereby,the robust PU-D/SiO_(2)/SSM prepared by cheap raw materials and facile dip-coating method exhibits a high potential for separating oil/water mixtures.展开更多
Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-...Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-based membranes.Herein,we firstly reported the incorporation of protic ILs (PILs) having ether-rich and carboxylate sites (ECPILs) into poly(ether-block-amide)(Pebax) matrix for efficient separation H_(2)S and CO_(2)from CH_(4).Notably,the optimal permeability of H_(2)S reaches up to 4310 Barrer (40C,0.50 bar) in Pebax/ECPIL membranes,along with H_(2)S/CH_(4)and (H_(2)StCO_(2))/CH_(4)selectivity of 97.7 and 112.3,respectively.These values are increased by 1125%,160.8%and 145.9%compared to those in neat Pebax membrane.Additionally,the solubility and diffusion coefficients of the gases were measured,demonstrating that ECPIL can simultaneously strengthen the dissolution and diffusion of H_(2)S and CO_(2),thus elevating the permeability and permselectivity.By using quantum chemical calculations and FT-IR spectroscopy,the highly reversible multi-site hydrogen bonding interaction between ECPILs and H_(2)S was revealed,which is responsible for the fast permeation of H_(2)S and good selectivity.Furthermore,H_(2)S/CO_(2)/CH_(4)(3/3/94 mol/mol) ternary mixed gas can be efficiently and stably separated by Pebax/ECPIL membrane for at least 100 h.Overall,this work not only illustrates that PILs with ether-rich and carboxylate hydrogen bonding sites are outstanding materials for simultaneous removal of H_(2)S and CO_(2),but may also provide a novel insight into the design of membrane materials for natural gas upgrading.展开更多
Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and ...Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.展开更多
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim...Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.展开更多
Tetrasodium iminodisuccinate(IDS)was used as an inhibitor in the separation of sphalerite and pyrite in the EX−Cu(II)(ethyl xanthate and Cu2+)system.The flotation test results demonstrated that IDS can effectively sep...Tetrasodium iminodisuccinate(IDS)was used as an inhibitor in the separation of sphalerite and pyrite in the EX−Cu(II)(ethyl xanthate and Cu2+)system.The flotation test results demonstrated that IDS can effectively separate sphalerite and pyrite under low alkaline conditions.Furthermore,high-quality zinc concentrates with a Zn grade of 58.48%and a recovery of 91.24%through mixed mineral flotation were obtained.The fundamental mechanisms were investigated through surface wettability tests,adsorption capacity tests,LEIS,FTIR,and XPS.The results confirmed that IDS prevents the adsorption of EX on the surface of pyrite,thereby reducing the response and reactivity of pyrite.The introduction of IDS causes the detachment of Cu2+from the Cu-activated pyrite surface.This process allowed IDS to chelate with the Fe sites on the surface of pyrite through the-COO-and N-centered active groups.By contrast,IDS exhibits weaker adhesion on the surface of Cu-activated sphalerite,making it easily displaced by EX through competitive adsorption.展开更多
Partitioning of actinides from lanthanides is pivotal for advancing nuclear waste management and sustaining nuclear energy development,yet it remains a formidable challenge due to the intricate chemical behaviors of t...Partitioning of actinides from lanthanides is pivotal for advancing nuclear waste management and sustaining nuclear energy development,yet it remains a formidable challenge due to the intricate chemical behaviors of these f-block elements.In this study,we introduce 3,6-di-2-pyridyl-1,2,4,5-tetrazine(L1),whose hydrolysis product of pyridine-2-carbox-aldehyde(pyridine-2-carbonyl)-hydrazone(L2)can fractionally crystallize U(Ⅵ)ions over Ln(Ⅲ)cations with high selectivity and efficiency.Through hydrolysis-induced C–N bond cleavage,L2 acts as a tetradentate ligand,coordinating with two UO_(2)^(2+) ions in a planar arrangement to form a zerodimensional cluster,[(UO_(2))2(μ_(3)-O)(L2)(CH_(3)COO)]·DMF(U-L2),while lanthanide ions(Ln=La,Pr,Nd,Sm,Eu,Gd,Tb,Yb,and Lu)remain in solution due to their inability to achieve similar coordination.This selective crystallization strategy yields exceptional separation factors(SFs)between U(Ⅵ)and Ln(Ⅲ),with a value of 756276 between U(Ⅵ)and Sm(Ⅲ),the highest reported to date.Furthermore,this fractional crystallization separation process can be achieved under mild ambient conditions with high SFs,enabling the development of a rapid,safe and energy-efficient strategy for once-through separation of high oxidation state actinides from lanthanides.展开更多
Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surfac...Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surface pretreatment experiments with citric acid,tartaric acid,and tannic acid(TA)on magnesite and dolomite as well as flotation experiments on pretreated samples were performed in this study.Experimental results demonstrated that when citric acid and tartaric acid are used for surface pretreatment,the separation effect of magnesite and dolomite is poor.However,when TA is used,the separation effect of magnesite and dolomite improves.SEM and BET analysis indicated that surface pretreatment with TA changes the surface morphology of the two minerals,resulting in additional concave pores on the dolomite surface,and a significant increase in pore size and specific surface area.The adsorption quantity test and contact angle measurement demonstrated that after surface pretreatment with TA,the magnesite adsorption capacity on sodium oleate(NaOL)slightly decreases and the dolomite adsorption capacity on NaOL considerably decreases.XPS detection concluded that the surface pretreatment of TA on the magnesite surface mainly relies on physical adsorption with weak adsorption ability and poor ability to act on Mg sites.The TA surface pretreatment action on the dolomite surface is mainly through chemical adsorption,and it is strongly and selectively adsorbed on the Ca site of dolomite through O.Actual ore rough selection experiments reveal that TA pretreatment successfully removes dolomite from magnesite,resulting in a high-quality magnesite concentrate characterized by a MgO grade of 45.49%and a CaO grade of 0.75%.展开更多
In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for elimin...In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for eliminating mercaptans from oil.In traditional scrubber towers,lye and oil are poorly mixed,the desulfurization efficiency is low,and the lye consumption is high.To enhance washing efficiency,a droplet micromixer and corresponding fiber coalescence separator were developed.By optimizing the structure and operating parameters,more effective mixing and separation were achieved,and both caustic washing and desulfurization were enhanced.The proposed mixer/separator outperforms the industry standard by reducing the caustic loading by 30%and offers superior economic and engineering performances.The results of this study offer a direction for designing and optimizing a mercaptan removal unit to enhance the scrubbing effectiveness and decrease expenses to achieve more efficient and green production process.展开更多
基金supported by the Foundation Research Project of Kaili University(No.2025ZD007)the National Key Research and Development Program of China(No.2021YFB3801503)the Joint Research Program of Shaoxing University and Shaoxing Institute,Zhejiang University(No.2023LHLG006),China.
文摘The presence of chirality,a fundamental attribute found in nature,is of great significance in the field of pharmaceutical science.Chiral drugs are unique in that their molecular structure is non-superimposable on its mirror image.This stereoisomerism significantly impacts the functionality,metabolic pathway,effectiveness,and safety of chiral medications.The enantiomers of chiral drugs can exhibit diverse pharmacological effects in the human body.As a result,it is essential to separate and purify chiral drugs effectively.Despite the abundance of reports on chiral drug separation membranes,there is a dearth of comprehensive reviews.This paper aims to fill this gap by providing a thorough review from a materials perspective,with a focus on the design and construction of chiral drug separation membranes.Furthermore,it systematically analyzes the separation mechanisms employed by these membranes.The paper also delves into the challenges and prospects related to chiral drug separation membranes,with the intention of imparting valuable insights for further research and development in this field.
文摘We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.
文摘Metal-Organic Frameworks(MOFs)have emerged as promising materials for gas adsorption and separation due to their exceptional surface area,tunable porosity,and versatility in functionalization.This paper explores the mechanisms of gas adsorption in MOFs,including physical adsorption,chemisorption,and synergistic effects,which contribute to their efficiency in capturing and separating gases.The applications of MOFs in key areas such as carbon dioxide capture,hydrogen storage,natural gas separation,and air purification are discussed,highlighting their potential to address pressing environmental and energy challenges.Additionally,the use of MOFs in selective gas separation,membranes,and adsorption-based technologies like Pressure Swing Adsorption(PSA)and Vacuum Swing Adsorption(VSA)is explored,emphasizing their advantages over traditional materials.Despite challenges related to scalability,stability,and cost,MOFs hold great promise for advancing gas separation technologies in the near future,offering more efficient,sustainable,and environmentally friendly solutions.
基金sponsored by the National Science Fund for Distinguished Young Scholars,China(22225804)the National Natural Science Foundation of China(22078102,22408101,22308105)。
文摘The limitations of swirl separation in removing microfine oil droplets in water have driven the development of hydrocyclone technology coupled with multiphase or multifield techniques.To enhance microfine oil droplets separation,a novel hydrocyclone separation coupled with fiber coalescence(HCCFC) was designed.The interaction between fiber balls and oil droplets inside the hydrocyclone,including droplet coalescence and breakage,was investigated.The influence of different operating parameters on separation efficiency was discussed.The results showed that fiber balls promoted oil droplet coalescence when the inlet droplet size(D_(43)) was below 22.37 μm but caused droplet breakage above this threshold.The coalescence performance of HCCFC improved with increasing inlet oil content but declined beyond 450 mg·L^(-1).Separation experiments confirmed that HCCFC outperformed conventional hydrocyclone,with separation efficiency increasing by 2.9% to 20.0%.As the fiber ball content and inlet flow rate increased,the separation efficiency showed a trend of first increasing and then decreasing.Additionally,HCCFC's separation efficiency varied with inlet oil droplet size distribution,showing the most significant enhancement when D_(43) was 22.37 μm,where separation efficiency increased by 14.4%.These findings offer insights into the development and application of multiphase coupled with hydrocyclone technology.
文摘The crisis of excessive increase in CO_(2)emissions has quickly become a serious issue and requires low-cost and bio-compatible solutions.The employee of membrane technology for CO_(2)gas separation has garnered significant interest among researchers.However,this method encounters challenges related to selectivity and permeability.Therefore,modifying and reinforcing the polymer membranes to improve gas separation performance seems essential.Among the various methods for polymer membrane modification,modification with magnesium-based fillers to prepare a mixed matrix membrane(MMM)is considered an efficient method.Owing to magnesium metal's low weight,low density,high strength,and good selectivity,magnesium-based materials(Mg-based materials)have more porosity,higher available surface area,more adsorption sites,lighter weight,and more gas absorption tendency than other fillers,which makes them an attractive choice for the preparation of gas separation MMMs.This research deals with the introduction of Mg-based materials,various methods of synthesis of Mg-based materials,different methods of introducing Mg-based materials into the membrane matrix,and their effect on the performance of MMMs in CO_(2)gas separation applications.Therefore,this review can provide researchers with light horizons in using the high potential of Mg-based materials as efficient fillers in MMMs to achieve excellent permeability and selectivity and generally improve their performance in CO_(2)gas separation applications.
基金supported by the Guizhou Provincial Basic Research Program(Natural Science) Youth Guidance(Nos.[2024]110,[2024]378)Science and Technology Innovation Team of Natural Science Foundation of Guizhou Province(No.CXTD[2023]005)+3 种基金Science and Technology Innovation Team of Higher Education Department of Guizhou Province(No.QJJ[2023]053)Natural Science Special of Guizhou University(No.202137)Guizhou Provincial Key Laboratory Platform Project(No.ZSYS[2025]008)PhD Foundation of Guizhou University(No.[2021]83)。
文摘Pyridine(Py) and 3-methylpyridine(3-MP) are crucial intermediates in chemical industrial processes.Here,we provide a simple and energy-efficient approach for the isolation of Py and 3-MP by employing crystalline cucurbit[6]uril(Q[6]).The crystal exhibit high selectivity for Py from the mixture of Py and 3-MP in both vapor and liquid phases,with separation purities close to 100%.The selectivity is attributed to the varying stability of the host-vip complexes after the absorption of Py or 3-MP,as revealed by the single-crystal structure analysis.ITC experimental results and DFT calculations indicate that,compared to3-MP,Q[6] has a higher binding strength and lower binding energy with Py.In addition,pyridine can be removed from the Q[6] cavity through vacuum heating or organic solvent immersion,enabling Q[6]reuse via reversible vip loading.This method offers a promising approach for high-purity Py and 3-MP separation with significant economic and environmental benefits.
基金financially supported by the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA0390000)open research fund of State Key Laboratory of Mesoscience and Engineering(MESO-23-D11).
文摘The production of high-purity H_(2) is the building block of hydrogen economy,which can greatly promote the construction of related technologies and infrastructure.Efficient H_(2)/CH_(4) separation is a necessary unit in producing high-purity energy and reducing greenhouse gas emissions,which can meet the industrial demand and help to address the energy issue and achieve global carbon neutrality goals.Membrane separation technology,as a promising strategy for H_(2) purification,has attracted much attention due to its high efficiency,energy conservation and versatile applications.This article reviews the latest research advances in the high-performance membranes for H_(2)/CH_(4) separation,and elu-cidates the effect of membrane materials,preparation methods and membrane structure on separation performance from the perspective of separation mechanisms.It also summarized the essential aspects of membrane design,such as microstructural regulation,multiphase coupling,the optimal usage conditions and simple analysis of economic benefits.Finally,the current challenges and future directions of membranes for H_(2)/CH_(4) separation were discussed,intending to provide in-depth reference and inspiration for the theoretical research and practical application of membrane separation technology.
基金supported by the National Natural Science Foundation of China(Nos.52372093 and 52102145)the Key R&D Program of Shaanxi Province(Nos.2023GXLH-045 and 2022SF-168)+4 种基金the Xi’an Programs for Science and Technology Plan(Nos.2020KJRC0090 and 21XJZZ0045)the Opening Project of Shanxi Key Laboratory of Advanced Manufacturing Technology(No.XJZZ202001)the Xi’an Municipal Bureau of Science and Technology(No.21XJZZ0054)the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry,Ministry of Education,Shaanxi University of Science and Technology(No.KFKT2021-01)the Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology,Shaanxi University of Science and Technology(No.KFKT2021-01).
文摘Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation.
基金supported by Fundamental Research Projects of Yunnan Province,China(Nos.202101BE070001-009,202301AU070189).
文摘Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.
基金Project supported by the National Natural Science Foundation of China(52104354)the National Natural Science Foundation of China(51674036)+1 种基金Joint Fund for Nuclear Technology Innovation Sponsored by the National Natural Science Foundation of Chinathe China National Nuclear Corporation(U2067201)。
文摘Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associated resources.Traditional utilization methods suffered the issues of low REEs leaching efficiency,huge amount of CaSO_(4)saturated wastewater and high recovery cost.To solve these issues,this study investigated the occurrence of REEs in PG and the leaching of REEs.The results show that REEs in PG are in the forms of(1)REEs mineral inclusions,(2)REEs isomorphous substitution of Ca^(2+)in gypsum lattice,(3)dispersed soluble REEs salts.Acid leaching results demonstrate that(1)the dissolution of gypsum matrix is the control factor of REEs leaching;(2)H_(2)SO_(4)is a promising leachant considering the recycle of leachate;(3)the gypsum matrix suffers a recrystallization during the acid leaching and releases the soluble REEs from PG to aqueous solution.For the recovery of the undissolved REEs mineral inclusions,wet sieving concentrated 37.1 wt%of the REEs in a 10.7 wt%mass,increasing REEs content from 309 to 1071 ppm.Finally,a green process combining gravity separation and hydrometallurgy is proposed.This process owns the merits of wastewater free,considerable REEs recovery(about 10%increase compared with traditional processes),excellent gypsum purification(>95 wt%CaSO_(4)·2H_(2)O,with<0.06 wt%of soluble P_(2)O_(5) and<0.015 wt%of soluble F)and reagent saving(about 2/3less reagent consumption than non-cyclical leaching).
基金National Natural Science Foundation of China(No.52373281)National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program,China(No.TC220H06N)。
文摘The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical output still remains a significant challenge.Here,a strategy of inducing constrained phase separation on single nanofibers via shear force was proposed.Employing electrospinning technology,a polyacrylonitrile/polyvinylidene difluoride(PAN/PVDF)nanofibrous membrane was fabricated in one step,which enabled simultaneous piezoelectric and triboelectric conversion within a single-layer membrane.Each nanofiber contained independent components of PAN and PVDF and exhibited a rough surface.The abundant frictional contact points formed between these heterogeneous components contributed to an enhanced endogenous triboelectric output,showcasing an excellent synergistic effect of piezoelectric and triboelectric response in the nanofibrous membrane.Additionally,the component mass ratio influenced the microstructure,piezoelectric conformation and piezoelectric performance of the PAN/PVDF nanofibrous membranes.Through comprehensive performance comparison,the optimal mass ratio of PAN to PVDF was determined to be 9∶1.The piezoelectric devices made of the optimal PAN/PVDF nanofibrous membranes with rough nanofiber surfaces generated an output voltage of 20 V,which was about 1.8 times that of the smooth one at the same component mass ratio.The strategy of constrained phase separation on the surface of individual nanofibers provides a new approach to enhance the output performance of single-layer piezoelectric nanofibrous materials.
基金supported by the National Natural Science Foundation of China(Grant No.2230081973)Shanghai Pilot Program for Basic Research(22TQ1400100-4).
文摘Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications.
基金Funded by the National Natural Science Foundation of China(No.22165019)。
文摘Separating oil/water mixtures via superhydrophobic stainless steel mesh(SSM)is a kind of efficient methods of treating oily wastewater,and the superhydrophobic SSM with a low cost,simple fabrication process and robust usability remains a challenge.Herein,urushiol-based benzoxazine(U-D)with a strong substrate adhesion and low surface free energy was used to anchor SiO_(2) particles on the SSM surface to obtain a durable superhydrophobic SSM(PU-D/SiO_(2)/SSM)through a simple dip-coating process,meanwhile,epoxy resin was also introduced to further improve the adhesion between coating and SSM.PU-D/SiO_(2)/SSM could successfully separate various immiscible oil-water mixtures with a separation efficiency of over 96%and a flux up to 27100 L/m^(2) h only by gravity,respectively.Especially,the modified SSM could effectively remove water from water-in-oil emulsion with a separation efficiency of 99.7%.Moreover,PU-D/SiO_(2)/SSM had an outstanding reusability,whose water contact angle and separation efficiency only slightly decreased after 20 cycles of separating oil/water mixture.In addition,the modified SSM also displayed a satisfactory abrasion resistance,chemical stability and self-cleaning property.Thereby,the robust PU-D/SiO_(2)/SSM prepared by cheap raw materials and facile dip-coating method exhibits a high potential for separating oil/water mixtures.
基金sponsored by the National Natural Science Foundation of China (Nos. 22308145, 22208140, 22178159, 22078145)Natural Science Foundation of Jiangsu Province (BK20230791)Postgraduate Research Innovation Program of Jiangsu Province (KYCX24_0165)。
文摘Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-based membranes.Herein,we firstly reported the incorporation of protic ILs (PILs) having ether-rich and carboxylate sites (ECPILs) into poly(ether-block-amide)(Pebax) matrix for efficient separation H_(2)S and CO_(2)from CH_(4).Notably,the optimal permeability of H_(2)S reaches up to 4310 Barrer (40C,0.50 bar) in Pebax/ECPIL membranes,along with H_(2)S/CH_(4)and (H_(2)StCO_(2))/CH_(4)selectivity of 97.7 and 112.3,respectively.These values are increased by 1125%,160.8%and 145.9%compared to those in neat Pebax membrane.Additionally,the solubility and diffusion coefficients of the gases were measured,demonstrating that ECPIL can simultaneously strengthen the dissolution and diffusion of H_(2)S and CO_(2),thus elevating the permeability and permselectivity.By using quantum chemical calculations and FT-IR spectroscopy,the highly reversible multi-site hydrogen bonding interaction between ECPILs and H_(2)S was revealed,which is responsible for the fast permeation of H_(2)S and good selectivity.Furthermore,H_(2)S/CO_(2)/CH_(4)(3/3/94 mol/mol) ternary mixed gas can be efficiently and stably separated by Pebax/ECPIL membrane for at least 100 h.Overall,this work not only illustrates that PILs with ether-rich and carboxylate hydrogen bonding sites are outstanding materials for simultaneous removal of H_(2)S and CO_(2),but may also provide a novel insight into the design of membrane materials for natural gas upgrading.
基金financially supported by the Original Exploration Project of the National Natural Science Foundation of China(No.52150079)the National Natural Science Foundation of China(Nos.U22A20130,U2004215,and 51974280)+1 种基金the Natural Science Foundation of Henan Province of China(No.232300421196)the Project of Zhongyuan Critical Metals Laboratory of China(Nos.GJJSGFYQ202304,GJJSGFJQ202306,GJJSGFYQ202323,GJJSGFYQ202308,and GJJSGFYQ202307)。
文摘Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.
基金financial support from the National Natural Science Foundation of China(Nos.22108258 and 52003251)Program for Science&Technology Innovation Talents in Universities of Henan Province(24HASTIT004)+1 种基金Outstanding Youth Fund of Henan Scientific Committee(222300420085)Science and Technology Joint Project of Henan Province(222301420041)。
文摘Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.
基金supports from the National Natural Science Foundation of China(No.52174272)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0306)the Hunan Provincial Natural Science Foundation of China(No.2020JJ5736).
文摘Tetrasodium iminodisuccinate(IDS)was used as an inhibitor in the separation of sphalerite and pyrite in the EX−Cu(II)(ethyl xanthate and Cu2+)system.The flotation test results demonstrated that IDS can effectively separate sphalerite and pyrite under low alkaline conditions.Furthermore,high-quality zinc concentrates with a Zn grade of 58.48%and a recovery of 91.24%through mixed mineral flotation were obtained.The fundamental mechanisms were investigated through surface wettability tests,adsorption capacity tests,LEIS,FTIR,and XPS.The results confirmed that IDS prevents the adsorption of EX on the surface of pyrite,thereby reducing the response and reactivity of pyrite.The introduction of IDS causes the detachment of Cu2+from the Cu-activated pyrite surface.This process allowed IDS to chelate with the Fe sites on the surface of pyrite through the-COO-and N-centered active groups.By contrast,IDS exhibits weaker adhesion on the surface of Cu-activated sphalerite,making it easily displaced by EX through competitive adsorption.
基金supported by the National Natural Science Foundation of China(U22B20139,22322609,22076152,and 22476158).
文摘Partitioning of actinides from lanthanides is pivotal for advancing nuclear waste management and sustaining nuclear energy development,yet it remains a formidable challenge due to the intricate chemical behaviors of these f-block elements.In this study,we introduce 3,6-di-2-pyridyl-1,2,4,5-tetrazine(L1),whose hydrolysis product of pyridine-2-carbox-aldehyde(pyridine-2-carbonyl)-hydrazone(L2)can fractionally crystallize U(Ⅵ)ions over Ln(Ⅲ)cations with high selectivity and efficiency.Through hydrolysis-induced C–N bond cleavage,L2 acts as a tetradentate ligand,coordinating with two UO_(2)^(2+) ions in a planar arrangement to form a zerodimensional cluster,[(UO_(2))2(μ_(3)-O)(L2)(CH_(3)COO)]·DMF(U-L2),while lanthanide ions(Ln=La,Pr,Nd,Sm,Eu,Gd,Tb,Yb,and Lu)remain in solution due to their inability to achieve similar coordination.This selective crystallization strategy yields exceptional separation factors(SFs)between U(Ⅵ)and Ln(Ⅲ),with a value of 756276 between U(Ⅵ)and Sm(Ⅲ),the highest reported to date.Furthermore,this fractional crystallization separation process can be achieved under mild ambient conditions with high SFs,enabling the development of a rapid,safe and energy-efficient strategy for once-through separation of high oxidation state actinides from lanthanides.
基金Project(BGRIMM-KJSKL-2024-07) supported by the Open Foundation of State Key Laboratory of Mineral Processing,ChinaProjects(52374259,52174239) supported by the National Natural Science Foundation of China。
文摘Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surface pretreatment experiments with citric acid,tartaric acid,and tannic acid(TA)on magnesite and dolomite as well as flotation experiments on pretreated samples were performed in this study.Experimental results demonstrated that when citric acid and tartaric acid are used for surface pretreatment,the separation effect of magnesite and dolomite is poor.However,when TA is used,the separation effect of magnesite and dolomite improves.SEM and BET analysis indicated that surface pretreatment with TA changes the surface morphology of the two minerals,resulting in additional concave pores on the dolomite surface,and a significant increase in pore size and specific surface area.The adsorption quantity test and contact angle measurement demonstrated that after surface pretreatment with TA,the magnesite adsorption capacity on sodium oleate(NaOL)slightly decreases and the dolomite adsorption capacity on NaOL considerably decreases.XPS detection concluded that the surface pretreatment of TA on the magnesite surface mainly relies on physical adsorption with weak adsorption ability and poor ability to act on Mg sites.The TA surface pretreatment action on the dolomite surface is mainly through chemical adsorption,and it is strongly and selectively adsorbed on the Ca site of dolomite through O.Actual ore rough selection experiments reveal that TA pretreatment successfully removes dolomite from magnesite,resulting in a high-quality magnesite concentrate characterized by a MgO grade of 45.49%and a CaO grade of 0.75%.
基金supported by the National Natural Science Foundation of China(52025103)the Xplorer Prize(XPLORER-2022-1034).
文摘In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for eliminating mercaptans from oil.In traditional scrubber towers,lye and oil are poorly mixed,the desulfurization efficiency is low,and the lye consumption is high.To enhance washing efficiency,a droplet micromixer and corresponding fiber coalescence separator were developed.By optimizing the structure and operating parameters,more effective mixing and separation were achieved,and both caustic washing and desulfurization were enhanced.The proposed mixer/separator outperforms the industry standard by reducing the caustic loading by 30%and offers superior economic and engineering performances.The results of this study offer a direction for designing and optimizing a mercaptan removal unit to enhance the scrubbing effectiveness and decrease expenses to achieve more efficient and green production process.