Clustering or connected dominating set (CDS) both approaches can establish a virtual backbone (VB) in wireless sensor networks (WSNs) or wireless mesh networks (WMNs). Each cluster consisting of a cluster head (CH) an...Clustering or connected dominating set (CDS) both approaches can establish a virtual backbone (VB) in wireless sensor networks (WSNs) or wireless mesh networks (WMNs). Each cluster consisting of a cluster head (CH) and its neighboring nodes can form a dominating set. After some bridging nodes were selected, cluster heads (CHs) connected through these bridging nodes naturally formed a CDS. Although CDS provides obvious backbone architecture, however, the number of cluster heads and bridging nodes may be too large, this may cause the loss of advantages of virtual backbone. When we effectively reduce their numbers, more effectively WCDS (Weakly Connected Dominating Set) can be fining out. Some essential topics on constructing WCDS-based VB in WSN/WMN are discussed in this paper. From the point of view of three different protocol layers, including network (NWK) layer, MAC layer, and physical (PHY) layer, we explore their cross-layer research topics and design algorithms. For NWK layer, area-based WCDS algorithms and routing strategies including via VB and not via VB are discussed. For MAC layer, a WCDS-based energy-efficient MAC protocol is presented. For PHY layer, battery-aware alternative VB selections and sensor nodes with different transmission ranges are addressed.展开更多
Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib...Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.展开更多
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,...Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.展开更多
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el...As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.展开更多
Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-in...Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.展开更多
Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks ac...Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks across sensor-processor interfaces.However,the absence of interactions among versatile biomimicking functionalities within a single device,which was developed for specific vision tasks,restricts the computational capacity,practicality,and scalability of in-sensor vision computing.Here,we propose a bioinspired vision sensor composed of a Ga N/Al N-based ultrathin quantum-disks-in-nanowires(QD-NWs)array to mimic not only Parvo cells for high-contrast vision and Magno cells for dynamic vision in the human retina but also the synergistic activity between the two cells for in-sensor vision computing.By simply tuning the applied bias voltage on each QD-NW-array-based pixel,we achieve two biosimilar photoresponse characteristics with slow and fast reactions to light stimuli that enhance the in-sensor image quality and HAR efficiency,respectively.Strikingly,the interplay and synergistic interaction of the two photoresponse modes within a single device markedly increased the HAR recognition accuracy from 51.4%to 81.4%owing to the integrated artificial vision system.The demonstration of an intelligent vision sensor offers a promising device platform for the development of highly efficient HAR systems and future smart optoelectronics.展开更多
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show...The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices.展开更多
Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart...Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart monitoring terminal,cloud storage/computing technology,and artificial intelligence,smart gas sensors represent the future of gassensing due to their merits of real-time multifunctional monitoring,earlywarning function,and intelligent and automated feature.Various electronicand optoelectronic gas sensors have been developed for high-performancesmart gas analysis.With the development of smart terminals and the maturityof integrated technology,flexible and wearable gas sensors play an increasingrole in gas analysis.This review highlights recent advances of smart gassensors in diverse applications.The structural components and fundamentalprinciples of electronic and optoelectronic gas sensors are described,andflexible and wearable gas sensor devices are highlighted.Moreover,sensorarray with artificial intelligence algorithms and smart gas sensors in“Internet of Things”paradigm are introduced.Finally,the challengesand perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.展开更多
Wireless sensor networks (WSNs) and wireless mesh networks (WMNs) are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunitie...Wireless sensor networks (WSNs) and wireless mesh networks (WMNs) are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunities. Currently, plenty of protocols are available on the security of either wireless sensor networks or wireless mesh networks, an investigation in peer work underpins the fact that neither of these protocols is adapt to the interconnection of these network types. The internal cause relies on the fact that they differ in terms of complexity, scalability and network abstraction level. Therefore, in this article, we propose a unified security framework with three key management protocols, MPKM, MGKM, and TKM which are able to provide basic functionalities on the simplest devices and advanced functionalities on high performance nodes. We perform a detailed performance evaluation on our protocols against some important metrics such as scalability, key connectivity and compromise resilience, and we also compare our solution to the current keying protocols for WSNs and WMNs.展开更多
从三维Mesh数据中分割建筑物立面以识别对象,是三维场景理解的关键,但现有方法多依赖高成本的精细标注数据。针对该问题,提出了一种半监督学习方法,引入一种基于对比学习和一致性正则化的半监督语义分割(semi-supervised semantic segme...从三维Mesh数据中分割建筑物立面以识别对象,是三维场景理解的关键,但现有方法多依赖高成本的精细标注数据。针对该问题,提出了一种半监督学习方法,引入一种基于对比学习和一致性正则化的半监督语义分割(semi-supervised semantic segmentation based on contrastive learning and consistency regularization,SS_CC)方法,用于分割三维Mesh数据的建筑物立面。在SS_CC方法中,改进后的对比学习模块利用正负样本之间的类可分性,能够更有效地利用类特征信息;提出的基于特征空间的一致性正则化损失函数,从挖掘全局特征的角度增强了对所提取建筑物立面特征的鉴别力。实验结果表明,所提出的SS_CC方法在F1分数、mIoU指标上优于当前一些主流方法,且在建筑物的墙面和窗户上的分割效果相对更好。展开更多
The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these chal...The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets.展开更多
The Mass Gathering Data Acquisition and Analysis (MaGDAA) project involved the development of hardware and software solutions to facilitate the rapid and effective collection of autonomous and survey based data during...The Mass Gathering Data Acquisition and Analysis (MaGDAA) project involved the development of hardware and software solutions to facilitate the rapid and effective collection of autonomous and survey based data during mass gathering events. The aim of the project was the development and trial of a purpose-built Open Hardware based environment monitoring sensor prototypes using IOIO (pronounced “yoyo”) boards. Data from these sensors, and other devices, was collected using Open Source software running on Android powered mobile phones, tablets and other open hardware based platforms. Data was shared using a Wi-Fi mesh network based on an Open Source project called The Serval Project. Additional data in the form of survey based questionnaires were collected using ODK Collect, one of the applications in the Open Data Kit suite. The MaGDAA project demonstrated that it is possible for researchers (through the use of Open Source software and Open Hardware) to own, visualise, and share data without the difficulties of setting up and maintaining servers. MaGDAA proved to be an effective infrastructure independent sensor logging network that enables a broad range of data collection (demographic, predispositions, motivations, psychosocial and environmental influencers and modifiers of audience behaviour, cultural value) in the field of mass gathering research.展开更多
文摘Clustering or connected dominating set (CDS) both approaches can establish a virtual backbone (VB) in wireless sensor networks (WSNs) or wireless mesh networks (WMNs). Each cluster consisting of a cluster head (CH) and its neighboring nodes can form a dominating set. After some bridging nodes were selected, cluster heads (CHs) connected through these bridging nodes naturally formed a CDS. Although CDS provides obvious backbone architecture, however, the number of cluster heads and bridging nodes may be too large, this may cause the loss of advantages of virtual backbone. When we effectively reduce their numbers, more effectively WCDS (Weakly Connected Dominating Set) can be fining out. Some essential topics on constructing WCDS-based VB in WSN/WMN are discussed in this paper. From the point of view of three different protocol layers, including network (NWK) layer, MAC layer, and physical (PHY) layer, we explore their cross-layer research topics and design algorithms. For NWK layer, area-based WCDS algorithms and routing strategies including via VB and not via VB are discussed. For MAC layer, a WCDS-based energy-efficient MAC protocol is presented. For PHY layer, battery-aware alternative VB selections and sensor nodes with different transmission ranges are addressed.
基金supported by the National Key Research and Development Program of China(2023YFB3809800)the National Natural Science Foundation of China(52172249,52525601)+2 种基金the Chinese Academy of Sciences Talents Program(E2290701)the Jiangsu Province Talents Program(JSSCRC2023545)the Special Fund Project of Carbon Peaking Carbon Neutrality Science and Technology Innovation of Jiangsu Province(BE2022011).
文摘Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.
基金supported by the Basic Science Research Program(2023R1A2C3004336,RS-202300243807)&Regional Leading Research Center(RS-202400405278)through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)。
文摘Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051,ZR2025QB50)+6 种基金Guangdong Basic and Applied Basic Research Foundation(2025A1515011191)the Shanghai Sailing Program(23YF1402200,23YF1402400)funded by Basic Research Program of Jiangsu(BK20240424)Open Research Fund of State Key Laboratory of Crystal Materials(KF2406)Taishan Scholar Foundation of Shandong Province(tsqn202408006,tsqn202507058)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University。
文摘As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.
文摘Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.
基金funded by the National Natural Science Foundation of China(Grant Nos.62322410,52272168,624B2135,61804047)the Fundamental Research Funds for the Central Universities(No.WK2030000103)。
文摘Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks across sensor-processor interfaces.However,the absence of interactions among versatile biomimicking functionalities within a single device,which was developed for specific vision tasks,restricts the computational capacity,practicality,and scalability of in-sensor vision computing.Here,we propose a bioinspired vision sensor composed of a Ga N/Al N-based ultrathin quantum-disks-in-nanowires(QD-NWs)array to mimic not only Parvo cells for high-contrast vision and Magno cells for dynamic vision in the human retina but also the synergistic activity between the two cells for in-sensor vision computing.By simply tuning the applied bias voltage on each QD-NW-array-based pixel,we achieve two biosimilar photoresponse characteristics with slow and fast reactions to light stimuli that enhance the in-sensor image quality and HAR efficiency,respectively.Strikingly,the interplay and synergistic interaction of the two photoresponse modes within a single device markedly increased the HAR recognition accuracy from 51.4%to 81.4%owing to the integrated artificial vision system.The demonstration of an intelligent vision sensor offers a promising device platform for the development of highly efficient HAR systems and future smart optoelectronics.
基金supported by the National Natural Science Foundation of China(NSFC 52175281,52475315)Youth Innovation Promotion Association of CAS(2021382)。
文摘The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices.
基金supported by the National Natural Science Foundation of China(No.22376159)the Fundamental Research Funds for the Central Universities.
文摘Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart monitoring terminal,cloud storage/computing technology,and artificial intelligence,smart gas sensors represent the future of gassensing due to their merits of real-time multifunctional monitoring,earlywarning function,and intelligent and automated feature.Various electronicand optoelectronic gas sensors have been developed for high-performancesmart gas analysis.With the development of smart terminals and the maturityof integrated technology,flexible and wearable gas sensors play an increasingrole in gas analysis.This review highlights recent advances of smart gassensors in diverse applications.The structural components and fundamentalprinciples of electronic and optoelectronic gas sensors are described,andflexible and wearable gas sensor devices are highlighted.Moreover,sensorarray with artificial intelligence algorithms and smart gas sensors in“Internet of Things”paradigm are introduced.Finally,the challengesand perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.
文摘Wireless sensor networks (WSNs) and wireless mesh networks (WMNs) are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunities. Currently, plenty of protocols are available on the security of either wireless sensor networks or wireless mesh networks, an investigation in peer work underpins the fact that neither of these protocols is adapt to the interconnection of these network types. The internal cause relies on the fact that they differ in terms of complexity, scalability and network abstraction level. Therefore, in this article, we propose a unified security framework with three key management protocols, MPKM, MGKM, and TKM which are able to provide basic functionalities on the simplest devices and advanced functionalities on high performance nodes. We perform a detailed performance evaluation on our protocols against some important metrics such as scalability, key connectivity and compromise resilience, and we also compare our solution to the current keying protocols for WSNs and WMNs.
文摘从三维Mesh数据中分割建筑物立面以识别对象,是三维场景理解的关键,但现有方法多依赖高成本的精细标注数据。针对该问题,提出了一种半监督学习方法,引入一种基于对比学习和一致性正则化的半监督语义分割(semi-supervised semantic segmentation based on contrastive learning and consistency regularization,SS_CC)方法,用于分割三维Mesh数据的建筑物立面。在SS_CC方法中,改进后的对比学习模块利用正负样本之间的类可分性,能够更有效地利用类特征信息;提出的基于特征空间的一致性正则化损失函数,从挖掘全局特征的角度增强了对所提取建筑物立面特征的鉴别力。实验结果表明,所提出的SS_CC方法在F1分数、mIoU指标上优于当前一些主流方法,且在建筑物的墙面和窗户上的分割效果相对更好。
基金funded by the National Natural Science Foundation of China(52475580)the Special Foundation of the Taishan Scholar Project(tsqn202211077,tsqn202311077)+3 种基金Shandong Provincial Excellent Overseas Young Scholar Foundation(2023HWYQ-069)the Shandong Provincial Natural Science Foundation(ZR2023ME118,ZR2023QF080)the Natural Science Foundation of Qingdao City(23-2-1-219-zyyd-jch,23-2-1-111-zyyd-jch)the Fundamental Research Funds for the Central Universities(23CX06032A).
文摘The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets.
文摘The Mass Gathering Data Acquisition and Analysis (MaGDAA) project involved the development of hardware and software solutions to facilitate the rapid and effective collection of autonomous and survey based data during mass gathering events. The aim of the project was the development and trial of a purpose-built Open Hardware based environment monitoring sensor prototypes using IOIO (pronounced “yoyo”) boards. Data from these sensors, and other devices, was collected using Open Source software running on Android powered mobile phones, tablets and other open hardware based platforms. Data was shared using a Wi-Fi mesh network based on an Open Source project called The Serval Project. Additional data in the form of survey based questionnaires were collected using ODK Collect, one of the applications in the Open Data Kit suite. The MaGDAA project demonstrated that it is possible for researchers (through the use of Open Source software and Open Hardware) to own, visualise, and share data without the difficulties of setting up and maintaining servers. MaGDAA proved to be an effective infrastructure independent sensor logging network that enables a broad range of data collection (demographic, predispositions, motivations, psychosocial and environmental influencers and modifiers of audience behaviour, cultural value) in the field of mass gathering research.