This paper proposes a sensor failure detection method based on artificial neural network and signal processing,in comparison with other methods,which does not need any redundancy information among sensor outputs and d...This paper proposes a sensor failure detection method based on artificial neural network and signal processing,in comparison with other methods,which does not need any redundancy information among sensor outputs and divides the output of a sensor into'Signal dominant component'and'Noise dominant component'because the pattern of sensor failure often appears in the'Noise dominant component'.With an ARMA model built for'Noise dominant component'using artificial neural network,such sensor failures as bias failure,hard failure,drift failure,spike failure and cyclic failure may be detected through residual analysis,and the type of sensor failure can be indicated by an appropriate indicator.The failure detection procedure for a temperature sensor in a hovercraft engine is simulated to prove the applicability of the method proposed in this paper.展开更多
In fuel cells, chemical energy is directly converted into heat and electricity without any emissions which makes them an attractive substitute for various energy needs. Fuel cells have high energy conversion ratio and...In fuel cells, chemical energy is directly converted into heat and electricity without any emissions which makes them an attractive substitute for various energy needs. Fuel cells have high energy conversion ratio and highpower densities which make them suitable for automotive applications. However, these fuel cell systems suffer with low reliability and durability as system components develop faults during operation resulting in degradation and diminished system performance. In this context, fault detection and fault mitigation strategies are being extensively developed. Diagnostic approaches like electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic analysis offer a truthful representation of the State of Health (SOH) of the fuel cell. However, these approaches are intrusive and require pausing the operation of the fuel cell effecting its integrity. Machine learning based fault detection and SOH estimation is a non-intrusive approach where a mapping function is established between the indicators and SOH. The SOH of a fuel cell can be correlated to the patterns in sensor signals or indicators. Indicators that influence SOH are cell voltages, current density distribution, impedance spectra, acoustic emission and magnetic fields. Developing an accurate fault detection and state estimation technique through data driven machine learning approaches will allow corrective measures to avoid irreversible faults and improve the reliability and durability of fuel cells.展开更多
文摘This paper proposes a sensor failure detection method based on artificial neural network and signal processing,in comparison with other methods,which does not need any redundancy information among sensor outputs and divides the output of a sensor into'Signal dominant component'and'Noise dominant component'because the pattern of sensor failure often appears in the'Noise dominant component'.With an ARMA model built for'Noise dominant component'using artificial neural network,such sensor failures as bias failure,hard failure,drift failure,spike failure and cyclic failure may be detected through residual analysis,and the type of sensor failure can be indicated by an appropriate indicator.The failure detection procedure for a temperature sensor in a hovercraft engine is simulated to prove the applicability of the method proposed in this paper.
文摘In fuel cells, chemical energy is directly converted into heat and electricity without any emissions which makes them an attractive substitute for various energy needs. Fuel cells have high energy conversion ratio and highpower densities which make them suitable for automotive applications. However, these fuel cell systems suffer with low reliability and durability as system components develop faults during operation resulting in degradation and diminished system performance. In this context, fault detection and fault mitigation strategies are being extensively developed. Diagnostic approaches like electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic analysis offer a truthful representation of the State of Health (SOH) of the fuel cell. However, these approaches are intrusive and require pausing the operation of the fuel cell effecting its integrity. Machine learning based fault detection and SOH estimation is a non-intrusive approach where a mapping function is established between the indicators and SOH. The SOH of a fuel cell can be correlated to the patterns in sensor signals or indicators. Indicators that influence SOH are cell voltages, current density distribution, impedance spectra, acoustic emission and magnetic fields. Developing an accurate fault detection and state estimation technique through data driven machine learning approaches will allow corrective measures to avoid irreversible faults and improve the reliability and durability of fuel cells.