期刊文献+
共找到3,765篇文章
< 1 2 189 >
每页显示 20 50 100
Optimizing wireless sensor network topology with node load consideration
1
作者 Ruizhi CHEN 《虚拟现实与智能硬件(中英文)》 2025年第1期47-61,共15页
Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caus... Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caused by node loads,which affects network performance.Methods To improve the overall performance and efficiency of wireless sensor networks,a new method for optimizing the wireless sensor network topology based on K-means clustering and firefly algorithms is proposed.The K-means clustering algorithm partitions nodes by minimizing the within-cluster variance,while the firefly algorithm is an optimization algorithm based on swarm intelligence that simulates the flashing interaction between fireflies to guide the search process.The proposed method first introduces the K-means clustering algorithm to cluster nodes and then introduces a firefly algorithm to dynamically adjust the nodes.Results The results showed that the average clustering accuracies in the Wine and Iris data sets were 86.59%and 94.55%,respectively,demonstrating good clustering performance.When calculating the node mortality rate and network load balancing standard deviation,the proposed algorithm showed dead nodes at approximately 50 iterations,with an average load balancing standard deviation of 1.7×10^(4),proving its contribution to extending the network lifespan.Conclusions This demonstrates the superiority of the proposed algorithm in significantly improving the energy efficiency and load balancing of wireless sensor networks to extend the network lifespan.The research results indicate that wireless sensor networks have theoretical and practical significance in fields such as monitoring,healthcare,and agriculture. 展开更多
关键词 node load Wireless sensor network K-means clustering Firefly algorithm Topology optimization
在线阅读 下载PDF
数据丢包对WSNs级联失效机理研究
2
作者 尹荣荣 朱华华 +1 位作者 刘思佳 崔晓寒 《控制理论与应用》 北大核心 2025年第2期412-418,共7页
传统无线传感器网络级联失效研究中未考虑丢包节点的全面影响,仿真模型也难以满足实验抗毁性测试要求.针对该问题,本文以节点的真实收包量为负载构建了网络级联失效模型,提出基于节点重要程度的抗毁性度量方法,并采用了Zigbee技术搭建... 传统无线传感器网络级联失效研究中未考虑丢包节点的全面影响,仿真模型也难以满足实验抗毁性测试要求.针对该问题,本文以节点的真实收包量为负载构建了网络级联失效模型,提出基于节点重要程度的抗毁性度量方法,并采用了Zigbee技术搭建实测网络,对丢包节点存在下的级联失效现象和不同负载分配方式对级联的影响进行了实验分析.同时,对丢包节点对不同抗级联策略的影响进行了实验对比.实验结果表明,一定条件下节点的丢包行为对网络的级联失效有很大的缓解作用,不同的负载分配方式呈现出不同的级联失效特点.另外,在多数低速率无线传感器网络中,级联时保留丢包节点可提升网络的级联失效抗毁性. 展开更多
关键词 无线传感器网络 级联失效 ZIGBEE 丢包节点
在线阅读 下载PDF
基于改进K-means和熵权法的WSN分簇路由算法
3
作者 方旺盛 王旭 《计算机与数字工程》 2025年第3期623-627,683,共6页
针对无线传感器网络能量有限、负载不均衡的问题,提出一种基于改进K-means和熵权法的WSN分簇路由算法(IKEW)。该算法在成簇阶段利用密度法和最大最小距离对K-means算法进行改进,并采用重分配方案平衡各簇节点的数量。在簇头选取阶段,采... 针对无线传感器网络能量有限、负载不均衡的问题,提出一种基于改进K-means和熵权法的WSN分簇路由算法(IKEW)。该算法在成簇阶段利用密度法和最大最小距离对K-means算法进行改进,并采用重分配方案平衡各簇节点的数量。在簇头选取阶段,采用熵权法计算各节点指标的权重,使选出的簇头更加合理。在数据传输阶段,根据簇头的剩余能量和数据的传输距离构造通信消耗函数来选择中继节点。仿真实验结果表明:提出的算法能够有效地均衡网络能耗,延长网络生命周期。 展开更多
关键词 无线传感器网络 K-MEANS 节点重分配 熵权法 负载均衡
在线阅读 下载PDF
An Optimal Node Localization in WSN Based on Siege Whale Optimization Algorithm
4
作者 Thi-Kien Dao Trong-The Nguyen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2201-2237,共37页
Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand... Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios. 展开更多
关键词 node localization whale optimization algorithm wireless sensor networks siege whale optimization algorithm OPTIMIZATION
在线阅读 下载PDF
RSSI-Based 3D Wireless Sensor Node Localization Using Hybrid T Cell Immune and Lotus Optimization
5
作者 Weiwei Hu Kiran Sree Pokkuluri +3 位作者 Rajesh Arunachalam Bander A.Jabr Yasser A.Ali Preethi Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第12期4833-4851,共19页
Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization... Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization is the process of identifying the target node’s location.In this research work,a Received Signal Strength Indicator(RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization models.Initially,the RSSI value is identified using the Deep Neural Network(DNN).The RSSI is conceded as the range-based method and it does not require special hardware for the node localization process,also it consumes a very minimal amount of cost for localizing the nodes in 3D WSN.The position of the anchor nodes is fixed for detecting the location of the target.Further,the optimal position of the target node is identified using Hybrid T cell Immune with Lotus Effect Optimization algorithm(HTCI-LEO).During the node localization process,the average localization error is minimized,which is the objective of the optimal node localization.In the regular and irregular surfaces,this hybrid algorithm effectively performs the localization process.The suggested hybrid algorithm converges very fast in the three-dimensional(3D)environment.The accuracy of the proposed node localization process is 94.25%. 展开更多
关键词 sensor node localization received signal strength indicator 3D wireless sensor network deep neural network average localization error and hybrid T cell immune with lotus effect optimization algorithm
在线阅读 下载PDF
基于改进瞪羚优化算法的UWSN三维定位算法 被引量:5
6
作者 付雷 王骥 《控制与决策》 北大核心 2025年第1期80-86,共7页
为解决三维空间中的水下无线传感器网络(underwater wireless sensor networks, UWSN)传统DV-Hop算法定位误差大的问题,提出一种基于改进瞪羚优化算法(improved gazelle optimization algorithm, IGOA)的UWSN三维定位算法(IGOADV-Hop).... 为解决三维空间中的水下无线传感器网络(underwater wireless sensor networks, UWSN)传统DV-Hop算法定位误差大的问题,提出一种基于改进瞪羚优化算法(improved gazelle optimization algorithm, IGOA)的UWSN三维定位算法(IGOADV-Hop).首先,通过双通信半径修正节点跳数,对锚节点间的距离误差进行加权修正;然后,在瞪羚优化算法引入Logistic映射初始化种群,增加种群多样性;接着,在开发阶段引入位置更新动态权重系数,提升节点位置计算的全局寻优能力;最后,使用IGOA替代最小二乘法进行节点三维坐标计算,并在网络中加入移动节点和水下噪声构建动态UWSN.仿真实验结果表明,与传统DV-Hop算法和其他群智能优化算法相比,所提出算法定位精度更高. 展开更多
关键词 水下无线传感器网络 三维定位 移动节点 DV-HOP算法 瞪羚优化算法 LOGISTIC映射 动态权重系数
原文传递
基于锥形SNS结构的多功能光纤传感器研制
7
作者 杜浩 樊国梁 张璐强 《大学物理实验》 2025年第5期38-45,共8页
基于光纤多模干涉原理,以Single-mode-No-core-Single-mode(SNS)光纤为结构基础,通过拉锥工艺设计了一款高性能的锥形SNS光纤传感器。实验数据表明,该传感器在溶液浓度和环境温度检测中表现出卓越性能,与未拉锥光纤传感器相比,锥形SNS... 基于光纤多模干涉原理,以Single-mode-No-core-Single-mode(SNS)光纤为结构基础,通过拉锥工艺设计了一款高性能的锥形SNS光纤传感器。实验数据表明,该传感器在溶液浓度和环境温度检测中表现出卓越性能,与未拉锥光纤传感器相比,锥形SNS光纤传感器在浓度和温度测量中灵敏度分别提升57.26%和58.04%。同时,该装置适应性强,能够应对多样化实验场景,并在浓度测量过程中受温度变化的交叉干扰较小。此外,开发了光功率—浓度/温度实时转换模块,实现了多物理量的实时转换与测量,响应时间约1 s,这为装置的市场化应用提供了技术支持。 展开更多
关键词 光纤多模干涉 拉锥技术 snS光纤传感器 实时检测
在线阅读 下载PDF
A Hybrid Framework Integrating Deterministic Clustering,Neural Networks,and Energy-Aware Routing for Enhanced Efficiency and Longevity in Wireless Sensor Network
8
作者 Muhammad Salman Qamar Muhammad Fahad Munir 《Computers, Materials & Continua》 2025年第9期5463-5485,共23页
Wireless Sensor Networks(WSNs)have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes(SNs).However,the operational lifespan of WSNs is significantly constrained by the lim... Wireless Sensor Networks(WSNs)have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes(SNs).However,the operational lifespan of WSNs is significantly constrained by the limited energy resources of SNs.Current energy efficiency strategies,such as clustering,multi-hop routing,and data aggregation,face challenges,including uneven energy depletion,high computational demands,and suboptimal cluster head(CH)selection.To address these limitations,this paper proposes a hybrid methodology that optimizes energy consumption(EC)while maintaining network performance.The proposed approach integrates the Low Energy Adaptive Clustering Hierarchy with Deterministic(LEACH-D)protocol using an Artificial Neural Network(ANN)and Bayesian Regularization Algorithm(BRA).LEACH-D improves upon conventional LEACH by ensuring more uniform energy usage across SNs,mitigating inefficiencies from random CH selection.The ANN further enhances CH selection and routing processes,effectively reducing data transmission overhead and idle listening.Simulation results reveal that the LEACH-D-ANN model significantly reduces EC and extends the network’s lifespan compared to existing protocols.This framework offers a promising solution to the energy efficiency challenges in WSNs,paving the way for more sustainable and reliable network deployments. 展开更多
关键词 Wireless sensor networks(Wsns) machine learning based artificial neural networks(ANNs) energy consumption(EC) LEACH-D sensor nodes(sns) Bayesian Regularization Algorithm(BRA)
在线阅读 下载PDF
一种改进鲸鱼优化算法的WSN覆盖策略优化研究
9
作者 卢秀丽 安娟华 +1 位作者 刘永立 刘佳术 《传感技术学报》 北大核心 2025年第10期1862-1871,共10页
为提高无线传感器网络覆盖率,降低无线传感器网络能耗,提出了一种基于改进鲸鱼优化算法的无线传感器网络覆盖优化方法。首先,根据LEACH协议,构建了具有三层结构的无线传感器网络模型,并提出多目标覆盖优化策略;其次,对传统鲸鱼优化算法... 为提高无线传感器网络覆盖率,降低无线传感器网络能耗,提出了一种基于改进鲸鱼优化算法的无线传感器网络覆盖优化方法。首先,根据LEACH协议,构建了具有三层结构的无线传感器网络模型,并提出多目标覆盖优化策略;其次,对传统鲸鱼优化算法进行了改进,通过引入非线性递减收敛因子和最优局部抖动避免算法出现“早熟”和陷入局部最优。最后,将所提算法与其他六种算法进行对比实验,验证所提方法的有效性。实验结果表明,在传感器节点数N=30和N=64时所提算法的覆盖率分别达到98.318%和99.101%;在相同节点数量情况下所提算法每轮所存活的节点数量和剩余能量要多于其他几种算法。 展开更多
关键词 无线传感器网络 鲸鱼优化算法 网络覆盖率 传感器节点 剩余能量
在线阅读 下载PDF
Secure Malicious Node Detection in Decentralized Healthcare Networks Using Cloud and Edge Computing with Blockchain-Enabled Federated Learning
10
作者 Raj Sonani Reham Alhejaili +2 位作者 Pushpalika Chatterjee Khalid Hamad Alnafisah Jehad Ali 《Computer Modeling in Engineering & Sciences》 2025年第9期3169-3189,共21页
Healthcare networks are transitioning from manual records to electronic health records,but this shift introduces vulnerabilities such as secure communication issues,privacy concerns,and the presence of malicious nodes... Healthcare networks are transitioning from manual records to electronic health records,but this shift introduces vulnerabilities such as secure communication issues,privacy concerns,and the presence of malicious nodes.Existing machine and deep learning-based anomalies detection methods often rely on centralized training,leading to reduced accuracy and potential privacy breaches.Therefore,this study proposes a Blockchain-based-Federated Learning architecture for Malicious Node Detection(BFL-MND)model.It trains models locally within healthcare clusters,sharing only model updates instead of patient data,preserving privacy and improving accuracy.Cloud and edge computing enhance the model’s scalability,while blockchain ensures secure,tamper-proof access to health data.Using the PhysioNet dataset,the proposed model achieves an accuracy of 0.95,F1 score of 0.93,precision of 0.94,and recall of 0.96,outperforming baseline models like random forest(0.88),adaptive boosting(0.90),logistic regression(0.86),perceptron(0.83),and deep neural networks(0.92). 展开更多
关键词 Authentication blockchain deep learning federated learning healthcare network machine learning wearable sensor nodes
在线阅读 下载PDF
Improving resistance of E690 steel to stress corrosion cracking in high Cl^(−)environments through Sn microalloying
11
作者 Liu Yang Xue-qun Cheng +1 位作者 Hong-wei Cao Xiao-gang Li 《Journal of Iron and Steel Research International》 2025年第5期1396-1412,共17页
A series of Sn microalloying high-strength low-alloy(HSLA)steels were prepared through vacuum melting and hot rolling.Their stress corrosion cracking(SCC)behavior under high Cl^(−)environments was investigated using U... A series of Sn microalloying high-strength low-alloy(HSLA)steels were prepared through vacuum melting and hot rolling.Their stress corrosion cracking(SCC)behavior under high Cl^(−)environments was investigated using U-bend immersion,slow strain rate testing,electrochemical methods,and novel SCC sensor.Results revealed that HSLA steel microalloying with 0.1 wt.%Sn demonstrated superior SCC resistance,primarily attributed to the effective inhibition of the anodic dissolution mechanism.Fracture morphology revealed a transformation in fracture mode from brittle to a mixture of brittle-ductile characteristics,accompanied by the formation of a protective SnO_(2)oxide film on the steel surface.However,excessive Sn content exacerbated SCC susceptibility due to the increased hydrolysis of Sn^(2+),leading to localized pitting and crack initiation.The critical role of optimal Sn content was highlighted in balancing mechanical properties and corrosion resistance,suggesting potential applications in industries where materials face harsh chloride environments. 展开更多
关键词 E690 steel sn microalloying Stress corrosion cracking Cl^(−)concentration sensor
原文传递
Deep Q-Learning Driven Protocol for Enhanced Border Surveillance with Extended Wireless Sensor Network Lifespan
12
作者 Nimisha Rajput Amit Kumar +3 位作者 Raghavendra Pal Nishu Gupta Mikko Uitto Jukka Mäkelä 《Computer Modeling in Engineering & Sciences》 2025年第6期3839-3859,共21页
Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures a... Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures and reduced coverage over time.To address this issue,this paper presents an innovative energy-efficient protocol based on deep Q-learning(DQN),specifically developed to prolong the operational lifespan of WSNs used in border surveillance.By harnessing the adaptive power of DQN,the proposed protocol dynamically adjusts node activity and communication patterns.This approach ensures optimal energy usage while maintaining high coverage,connectivity,and data accuracy.The proposed system is modeled with 100 sensor nodes deployed over a 1000 m×1000 m area,featuring a strategically positioned sink node.Our method outperforms traditional approaches,achieving significant enhancements in network lifetime and energy utilization.Through extensive simulations,it is observed that the network lifetime increases by 9.75%,throughput increases by 8.85%and average delay decreases by 9.45%in comparison to the similar recent protocols.It demonstrates the robustness and efficiency of our protocol in real-world scenarios,highlighting its potential to revolutionize border surveillance operations. 展开更多
关键词 Wireless sensor networks(Wsns) energy efficiency reinforcement learning network lifetime dynamic node management autonomous surveillance
在线阅读 下载PDF
基于WRSN的双MC协同充电策略研究
13
作者 杨佳 寇东山 +2 位作者 余斌 吴佩林 杨理 《传感技术学报》 北大核心 2025年第7期1280-1290,共11页
针对无线可充电传感器网络(Wireless Rechargeable Sensor Networks, WRSN)中的节点能量问题,以按需充电架构为基础,提出一种不均匀分区的双MC(Mobile Charger)协同充电策略DMCCS(Double MC Collaborative Charging Strategy)。策略首... 针对无线可充电传感器网络(Wireless Rechargeable Sensor Networks, WRSN)中的节点能量问题,以按需充电架构为基础,提出一种不均匀分区的双MC(Mobile Charger)协同充电策略DMCCS(Double MC Collaborative Charging Strategy)。策略首先通过聚合度对WRSN进行分区处理,以此划分移动充电设备MC的服务分区;然后根据不同传感器节点的能耗率确定其最佳充电请求阈值;最后在此基础上,综合节点的剩余能量、能耗率以及距离等因子对MC进行路径规划。仿真实验表明,DMCCS能有效降低节点死亡率,提高MC的充电效率,延长网络的生存周期。 展开更多
关键词 无线可充电传感器网络 协同充电 网络分区 节点死亡率 路径规划
在线阅读 下载PDF
基于对立竞争群优化器的WSN部署策略研究
14
作者 罗清波 朱星星 《传感技术学报》 北大核心 2025年第3期533-542,共10页
为提高无线传感器网络高覆盖率,降低无线传感器网络能耗,提出了一种基于对立竞争群优化器的WSN部署策略。首先,采用二进制传感器模型监测感知区域,为每个传感器节点生成一条避障路径,建立传感器覆盖模型和移动模型。其次,采用基于对立... 为提高无线传感器网络高覆盖率,降低无线传感器网络能耗,提出了一种基于对立竞争群优化器的WSN部署策略。首先,采用二进制传感器模型监测感知区域,为每个传感器节点生成一条避障路径,建立传感器覆盖模型和移动模型。其次,采用基于对立的学习改进竞争群优化器算法,将虚拟力算法与边界机制相结合开发了一种混合边界机制,并运用维诺图的分区能力分解每个传感器的感知区域,从而感知半径分配的网络信息。最后,选择了几种典型应用场景进行了仿真分析,并与其他四种方法进行了对比,验证所提方法的有效性。实验结果表明,所提方法能够在实现最大化覆盖区域的同时最小化网络能量消耗,且对于所测试场景,所提方法的移动距离与覆盖收敛速度均优于其他对比算法。 展开更多
关键词 无线传感器网络 节点部署 网络覆盖率 竞争群优化器 虚拟力算法
在线阅读 下载PDF
Deep Auto-Encoder Based Intelligent and Secure Time Synchronization Protocol(iSTSP)for Security-Critical Time-Sensitive WSNs
15
作者 Ramadan Abdul-Rashid Mohd Amiruddin Abd Rahman Abdulaziz Yagoub Barnawi 《Computer Modeling in Engineering & Sciences》 2025年第9期3213-3250,共38页
Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade... Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade substantially under malicious interference.We introduce iSTSP,an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust,precise synchronization even in hostile environments:(1)trust preprocessing that filters node participation using behavioral trust scoring;(2)anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time;(3)reliability-weighted consensus that prioritizes high-trust nodes during time aggregation;and(4)convergence-optimized synchronization that dynamically adjusts parameters using theoretical stability bounds.We provide rigorous convergence analysis including a closed-form expression for convergence time,and validate the protocol through both simulations and realworld experiments on a controlled 16-node testbed.Under Sybil attacks with five malicious nodes within this testbed,iSTSP maintains synchronization error increases under 12%and achieves a rapid convergence.Compared to state-ofthe-art protocols like TPSN,SE-FTSP,and MMAR-CTS,iSTSP offers 60%faster detection,broader threat coverage,and more than 7 times lower synchronization error,with a modest 9.3%energy overhead over 8 h.We argue this is an acceptable trade-off for mission-critical deployments requiring guaranteed security.These findings demonstrate iSTSP’s potential as a reliable solution for secure WSN synchronization and motivate future work on large-scale IoT deployments and integration with energy-efficient communication protocols. 展开更多
关键词 Time-sensitive wireless sensor networks(TS-Wsns) secure time synchronization protocol trust-based authentication autoencoder model deep learning malicious node detection Internet of Things energyefficient communication protocols
在线阅读 下载PDF
增强多策略樽海鞘群算法的WSN覆盖优化
16
作者 郑爱云 刘晓震 +2 位作者 刘伟民 陈澍军 郑直 《仪表技术与传感器》 北大核心 2025年第5期71-80,共10页
针对无线传感器网络(WSN)覆盖率低、能耗大、网络寿命短,初始樽海鞘群算法(SSA)收敛效率和精度低、易陷入局部最优解等问题,提出一种增强多策略樽海鞘群优化算法。首先,将社会螺旋搜索策略引入初始算法中,提高了算法的收敛效率,增强了... 针对无线传感器网络(WSN)覆盖率低、能耗大、网络寿命短,初始樽海鞘群算法(SSA)收敛效率和精度低、易陷入局部最优解等问题,提出一种增强多策略樽海鞘群优化算法。首先,将社会螺旋搜索策略引入初始算法中,提高了算法的收敛效率,增强了对搜索空间的覆盖性和对搜索盲点的清理;其次,为了避免算法陷入局部最优解,整体提高算法收敛精度以及速度,在初始算法中引入自适应种群策略;然后,采用混合反向学习策略,增强种群多样性,进一步增强算法跳出局部最优的能力;最后,使用最优解混合变异和贪婪策略,提高精确开发阶段的搜索精度,将改进算法应用到无线传感器网络覆盖优化中。实验结果表明,在相同环境设置下,相比初始SSA、灰狼优化算法(GWO)和改进鲸鱼优化算法(IWOA),覆盖率分别提高了10.29%、7.12%和12.86%,可达到98.11%。 展开更多
关键词 无线传感器网络 樽海鞘群算法 节点覆盖率 增强多策略 混合反向学习
在线阅读 下载PDF
基于凸包优化的WSN源节点隐私保护算法研究
17
作者 张云龙 《微处理机》 2025年第4期13-17,共5页
针对无线传感器网络受三维环境影响,无法有效构建凸包结构的源节点隐私保护区域问题,提出优化算法。该方法利用节点路由表,在传统二维坐标定位基础上,实现无效节点的标记,进而优化凸包构建过程,再利用优化后的凸包构建源节点隐私保护区... 针对无线传感器网络受三维环境影响,无法有效构建凸包结构的源节点隐私保护区域问题,提出优化算法。该方法利用节点路由表,在传统二维坐标定位基础上,实现无效节点的标记,进而优化凸包构建过程,再利用优化后的凸包构建源节点隐私保护区域,实现对源节点位置隐私的保护工作。仿真实验结果表明,基于凸包优化的算法可以有效降低节点在构建凸包过程中的能量损耗,降低对于节点硬件条件的需求,有效提高三维凸包的构建效率,能够满足于规模较大的无线传感器网络的应用需求。 展开更多
关键词 无线传感器网络 源节点隐私保护 三维凸包 路由优化
在线阅读 下载PDF
WSN中基于最大似然估计的节点定位方法
18
作者 徐海军 马佩勋 《空天预警研究学报》 2025年第5期365-368,共4页
针对军事场景下传统基于RSSI的最大似然估计(ML-RSSI)因非凸性导致的收敛慢、计算复杂等缺陷,提出一种高精度、低复杂度的基于RSSI的最大似然估计节点定位(MLNL-RSSI)方法.首先利用RSSI测距建立目标函数;然后针对其非凸、非连续特性,通... 针对军事场景下传统基于RSSI的最大似然估计(ML-RSSI)因非凸性导致的收敛慢、计算复杂等缺陷,提出一种高精度、低复杂度的基于RSSI的最大似然估计节点定位(MLNL-RSSI)方法.首先利用RSSI测距建立目标函数;然后针对其非凸、非连续特性,通过凸松弛与连续化处理将其转化为可优化形式;最后采用梯度下降法求解目标节点位置,显著降低运算复杂度.仿真结果表明,与现有同类方法相比,MLNL-RSSI方法在保证定位精度的同时,能大幅提升收敛速度,计算效率更高,更适应军事任务对实时性与资源受限的严苛需求. 展开更多
关键词 无线传感网络 节点定位 接收信号强度指示 最大似然 凸松驰
在线阅读 下载PDF
Physical layer design of wireless sensor network nodes 被引量:5
19
作者 钟子果 胡爱群 王丹 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期21-25,共5页
Major consideration dimensions for the physical layer design of wireless sensor network (WSN) nodes is analyzed by comparing different wireless communication approaches, diverse mature standards, important radio fre... Major consideration dimensions for the physical layer design of wireless sensor network (WSN) nodes is analyzed by comparing different wireless communication approaches, diverse mature standards, important radio frequency (RF) parameters and various microcontroller unit (MCU) solutions. An implementation of the WSN node is presented with experimental results and a novel "one processor working at two frequencies" energy saving strategy. The lifetime estimation issue is analyzed with consideration to the periodical listen required by common WSN media access control (MAC) algorithms. It can be concluded that the startup time of the RF which determines the best sleep time ratio and the shortest backoff slot time of MAC, the RF frequency and modulation methods which determinate the RX and TX current, and the overall energy consumption of the dual frequency MCU SOC ( system on chip) are the most essential factors for the WSN node physical layer design. 展开更多
关键词 wireless sensor network node physical layer radio frequency energy consumption node lifetime
在线阅读 下载PDF
无线传感器网络基于测距的节点定位算法综述OverviewoftheNodeLocalizationAlgorithmBasedonRangingofWirelessSensorNetworks 被引量:1
20
作者 罗兰花 梁海英 任子亭 《科技视界》 2016年第3期27-28,共2页
基于测距的定位方法对测量的距离信息运用几何知识求解未知节点的位置,常用在定位精度较高的领域,可在误差、能耗、受环境因素影响等方面进行优化。本文对基于测距的无线传感器网络节点定位算法进行详细地分析和比较。
关键词 无线传感器网络 节点定位 三边测量法 最大似然估计法
在线阅读 下载PDF
上一页 1 2 189 下一页 到第
使用帮助 返回顶部