The paper design hardware platform based on network node, and analyze ZigBee protocol architecture and standards of each layer; on based of ZigBee protocol stack, we design the application program of network coordinat...The paper design hardware platform based on network node, and analyze ZigBee protocol architecture and standards of each layer; on based of ZigBee protocol stack, we design the application program of network coordinator and terminal node to realize the data acquisition; design of network system has the characteristics of low cost, small volume, test results show that the mesh topology, network support, can be rapidly deployed, temperature, humidity, light intensity information of the smooth reading environment, that can be used for domestic environmental monitoring field.展开更多
Dear Editor,This letter deals with the distributed recursive set-membership filtering(DRSMF)issue for state-saturated systems under encryption-decryption mechanism.To guarantee the data security,the encryption-decrypt...Dear Editor,This letter deals with the distributed recursive set-membership filtering(DRSMF)issue for state-saturated systems under encryption-decryption mechanism.To guarantee the data security,the encryption-decryption mechanism is considered in the signal transmission process.Specifically,a novel DRSMF scheme is developed such that,for both state saturation and encryption-decryption mechanism,the filtering error(FE)is limited to the ellipsoid domain.Then,the filtering error constraint matrix(FECM)is computed and a desirable filter gain is derived by minimizing the FECM.Besides,the bound-edness evaluation of the FECM is provided.展开更多
A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data ac...A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data acquisition and processing functions, the gateway supports the Bluetooth-based local interface and the general packet radio service (GPRS)-based remote interface. Users on the client service side can use a pocket PC or notebook PC to achieve real-time data acquisition and control instruction implementation, or remotely control the home control system through a mobile phone by sending a short message. The Labview graphical development environment is adopted to create PDA applications running on pocket PCs and monitoring platform established on notebook PCs. Except for the gateway, other nodes in the system work in sleep mode most of the time on the system, and thus it improves the lifetime of the whole system efficiently.展开更多
Based on wireless sensor networks, a physiological signal acquisition system is proposed. The system is used in classroom education in order to understand the physiological changes in the students. In the system,the b...Based on wireless sensor networks, a physiological signal acquisition system is proposed. The system is used in classroom education in order to understand the physiological changes in the students. In the system,the biological electrical signal related to student attention and emotion states can be measured by electrocardiography signals. The bioelectrical signal is digitalized at a 200 Hz sampling rate and is transmitted by the ZigBee protocol. Simultaneously, the Bluetooth technology is also embedded in the nodes so as to meet the high sampling rate and the high-bandwidth transmission. The system can implement the monitoring tasks for 30 students, and the experimental results of using the system in the classroom are proposed. Finally, the applications of wireless sensor networks used in education is also discussed.展开更多
An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If th...An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If the MRS receives accident alarm information, the group of robots will navigate to the accident sites and provide corresponding emergency services.According to the characteristics of the MRS, a distributed consensus formation protocol is designed, which can assure that the multiple robots arrive at the accident site in a specified formation. The prototype emergency service system was designed and implemented, and some relevant simulations and experiments were carried out. The results showthat the MRS can successfully provide emergency lighting and failure node replacement services when accidents happen. The effectiveness of the algorithm and the feasibility of the system are verified.展开更多
[Objective] To water content monitoring study the application of wireless sensor network in field so and to discuss the methods for solving the problems of low sampling rate, high cost and poor real-time in actual mon...[Objective] To water content monitoring study the application of wireless sensor network in field so and to discuss the methods for solving the problems of low sampling rate, high cost and poor real-time in actual monitoring. [Method] The architecture of wireless sensor network, network nodes, hardware design as well as principle for the program structure of software operating system and corresponding parameters were analyzed to illustrate the characteristics of monitoring system for field soil water content based on wireless sensor network, and the advantages in application of this system. [Result] Sensor nodes could correctly collect and transmit soil water content, realize stable data transmission of soil water content, indicating that wireless sensor network is suitable for real-time monitoring of field soil water content. [Conclusion] This study indicates that wireless sensor network possesses a widely application foreground in the development of agriculture.展开更多
To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of t...To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of the system,building the systematic structure of applied system and network system,and implementing the energy control and safety design of system.The system can reduce manpower operation and the error of manual measuration in the course of practical production,reduce the cost of agricultural production,and realize automatization of agricultural production to the largest extent to provide an effective way to realize good quality and high yield primary production,which has an important realistic meaning.展开更多
Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over exte...Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over extended periods of time without the need for dedicated wiring.Energy harvesting provides a potential solution to this problem in many applications.This paper reviews the characteristics and energy requirements of typical sensor network nodes,assesses a range of potential ambient energy sources,and outlines the characteristics of a wide range of energy conversion devices.It then proposes a method to compare these diverse sources and conversion mechanisms in terms of their normalised power density.展开更多
It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sens...It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sensor Networks(UWSNs).To this end,this paper investigates the relationship between the Degree of Target Change(DoTC)and the detection period,as well as the impact of individual nodes.A Hierarchical Detection and Tracking Approach(HDTA)is proposed.Firstly,the network detection period is determined according to DoTC,which reflects the variation of target motion.Secondly,during the network detection period,each detection node calculates its own node detection period based on the detection mutual information.Taking DoTC as pheromone,an ant colony algorithm is proposed to adaptively adjust the network detection period.The simulation results show that the proposed HDTA with the optimizations of network level and node level significantly improves the detection accuracy by 25%and the network energy consumption by 10%simultaneously,compared to the traditional adaptive period detection schemes.展开更多
Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of...Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.展开更多
Aiming at the application of a wireless sensor network to locating miners in underground mine,we design a wireless sensor network location node system,considering the communication performance and the intrinsic safety...Aiming at the application of a wireless sensor network to locating miners in underground mine,we design a wireless sensor network location node system,considering the communication performance and the intrinsic safety. The location node system consists of a mobile node,several fixed nodes,and a sink node,all of whose circuits were designed based on CC2430. A varistor and a RC circuit were used in the reset circuit of a sensor node to guarantee the intrinsic safety by reducing discharge energy,the theoretical analysis of the discharge energy shows that the reset circuit is an intrinsic safety one. The analysis and simulation about the performance of the location node system are discussed,such as network communication delay and packet loss rate,the results show that the highest network communication delay of the system is about 0.11 seconds,and the highest packet loss rate is about 0.13,which assures the location node system has a high reliability,and can locate miners in the underground mine.展开更多
Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed ...Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway.Ensuring communications in heterogeneous WSNs,is a critical issue that needs to be studied.In this research paper,we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communication.Specifically,two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway.The overall system integrates many different sensors in terms of types,communication protocols,and accuracy,which can be used in many applications in realistic environments such as on land,under water,or in the air.In addition to this,a synchronous management software on ThingSpeak Web server and Blynk app is designed.In the proposed system,the token ring protocol in Zigbee network and polling mechanism in LoRa network is used.The system can operate with a packet loss rate of less than 0.5%when the communication range of the Zigbee network is 630 m,and the communication range of the LoRa network is 3.7 km.On the basis of the digital results collected on the management software,this study proves tremendous improvements in the system performance.展开更多
In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),dee...In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.展开更多
This paper introduces a parking management system based on a wireless sensor network developed by our group. The system consists of a large amount of parking space monitoring nodes, a few parking guiding nodes, a sink...This paper introduces a parking management system based on a wireless sensor network developed by our group. The system consists of a large amount of parking space monitoring nodes, a few parking guiding nodes, a sink node and a management station. All the nodes exchange information with each other through wireless communication. The prototype of the parking management system has been implemented and the preliminary test results show that the performance of the system can satisfy the requirements of the application.展开更多
Wireless sensor networks have already enabled numerous embedded wireless applications such as military, environmental monitoring, intelligent building, etc. Because micro-sensor nodes are supposed to operate for month...Wireless sensor networks have already enabled numerous embedded wireless applications such as military, environmental monitoring, intelligent building, etc. Because micro-sensor nodes are supposed to operate for months or even years with very limited battery power source, it is a challenge for researchers to obtain long operating hour without scarifying original system performances. In this paper, the energy consumption sources of the wireless sensor networks are firstly analyzed, with the digital processing and radio transceiver units being emphasized. Then, we introduce the design scheme of our energy-aware wireless sensor network (GAINS). In GAINS, techniques to conserve the energy are exploited including the energy optimization node, software and energy-efficient communication protocol. The design architecture of our ultra low power wireless sensor network (WO-LPP) is specially presented.展开更多
In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the me...In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.展开更多
Based on the nowadays' condition, it is urgent that the gas detection cable communication system must be replaced by the wireless communication systems. The wireless sensors distributed in the environment can achieve...Based on the nowadays' condition, it is urgent that the gas detection cable communication system must be replaced by the wireless communication systems. The wireless sensors distributed in the environment can achieve the intelligent gas monitoring system. Apply with multilayer data fuse to design working tactics, and import the artificial neural networks to analyze detecting result. The wireless sensors system communicates with the control center through the optical fiber cable. All the gas sensor nodes distributed in coal mine are combined into an intelligent, flexible structure wireless network system, forming coal mine gas monitoring system based on wireless sensor network.展开更多
In unstructured environments, dynamic resource assignment is required for effective cooperation of robot teams. In some scenarios, robots are in charge of executing multiple missions simultaneously. This creates risks...In unstructured environments, dynamic resource assignment is required for effective cooperation of robot teams. In some scenarios, robots are in charge of executing multiple missions simultaneously. This creates risks of deadlock due to the presence of shared resources among various missions. The main contribution of this paper is the development of a novel approach that combines the one-step look-ahead deadlock avoidance policy with dynamic resource assignment. The dynamicresource assignment is achieved using greedy resource assignment for multi-mission robot teams in the framework of a matrix-based discrete event controller. Simulation results are presented in MATLAB to discuss in detail the proposed control strategy. The paper also discusses the toolkit developed in LabVIEW which is used to implement this control framework using a suitable example.展开更多
In this paper,a formal system is proposed based on beta reputation for the development of trustworthy wireless sensor networks(FRS-TWSN).Following this approach,key concepts related to reputation are formal described ...In this paper,a formal system is proposed based on beta reputation for the development of trustworthy wireless sensor networks(FRS-TWSN).Following this approach,key concepts related to reputation are formal described step by step for wireless sensor networks where sensor nodes maintain reputation for other sensors and use it to evaluate their trustworthiness.By proving some properties of beta reputation system,the beta distribution is founded to fit well to describe reputation system.Also,a case system is developed within this framework for reputation representation,updates and integration.Simulation results show this scheme not only can keep stable reputation but also can prevent the system from some attacks as bad mouthing and reputation cheating.展开更多
Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like d...Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs.展开更多
文摘The paper design hardware platform based on network node, and analyze ZigBee protocol architecture and standards of each layer; on based of ZigBee protocol stack, we design the application program of network coordinator and terminal node to realize the data acquisition; design of network system has the characteristics of low cost, small volume, test results show that the mesh topology, network support, can be rapidly deployed, temperature, humidity, light intensity information of the smooth reading environment, that can be used for domestic environmental monitoring field.
基金supported by the National Natural Science Foundation of China(12471416,12171124,12301567)the Heilongjiang Provincial Natural Science Foundation of China(PL2024F015)+2 种基金the Postdoctoral Science Foundation of Heilongjiang Province of China(LBH-Z22199)the Fundamental Research Foun-dation for Universities of Heilongjiang Province of China(2022-KYYWF-0141)the Alexander von Humboldt Foundation of Germany.
文摘Dear Editor,This letter deals with the distributed recursive set-membership filtering(DRSMF)issue for state-saturated systems under encryption-decryption mechanism.To guarantee the data security,the encryption-decryption mechanism is considered in the signal transmission process.Specifically,a novel DRSMF scheme is developed such that,for both state saturation and encryption-decryption mechanism,the filtering error(FE)is limited to the ellipsoid domain.Then,the filtering error constraint matrix(FECM)is computed and a desirable filter gain is derived by minimizing the FECM.Besides,the bound-edness evaluation of the FECM is provided.
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA01Z221)the NationalNatural Science Foundation of China (No.60875070)+1 种基金the Innovation Project of Graduate Students of Jiangsu Province (No.CX08B-049Z)Southeast University Teaching and Research Foundation
文摘A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data acquisition and processing functions, the gateway supports the Bluetooth-based local interface and the general packet radio service (GPRS)-based remote interface. Users on the client service side can use a pocket PC or notebook PC to achieve real-time data acquisition and control instruction implementation, or remotely control the home control system through a mobile phone by sending a short message. The Labview graphical development environment is adopted to create PDA applications running on pocket PCs and monitoring platform established on notebook PCs. Except for the gateway, other nodes in the system work in sleep mode most of the time on the system, and thus it improves the lifetime of the whole system efficiently.
基金The National Natural Science Foundation of China(No.60775057)
文摘Based on wireless sensor networks, a physiological signal acquisition system is proposed. The system is used in classroom education in order to understand the physiological changes in the students. In the system,the biological electrical signal related to student attention and emotion states can be measured by electrocardiography signals. The bioelectrical signal is digitalized at a 200 Hz sampling rate and is transmitted by the ZigBee protocol. Simultaneously, the Bluetooth technology is also embedded in the nodes so as to meet the high sampling rate and the high-bandwidth transmission. The system can implement the monitoring tasks for 30 students, and the experimental results of using the system in the classroom are proposed. Finally, the applications of wireless sensor networks used in education is also discussed.
基金The National Natural Science Foundation of China(No.61375076)the Research&Innovation Program for Graduate Student in Universities of Jiangsu Province(No.KYLX_0108)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1423)Jiangsu Planned Projects for Postdoctoral Research Funds(No.1302064B)
文摘An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If the MRS receives accident alarm information, the group of robots will navigate to the accident sites and provide corresponding emergency services.According to the characteristics of the MRS, a distributed consensus formation protocol is designed, which can assure that the multiple robots arrive at the accident site in a specified formation. The prototype emergency service system was designed and implemented, and some relevant simulations and experiments were carried out. The results showthat the MRS can successfully provide emergency lighting and failure node replacement services when accidents happen. The effectiveness of the algorithm and the feasibility of the system are verified.
基金Supported by the National High-tech R&D Program of China(2006AA100223)~~
文摘[Objective] To water content monitoring study the application of wireless sensor network in field so and to discuss the methods for solving the problems of low sampling rate, high cost and poor real-time in actual monitoring. [Method] The architecture of wireless sensor network, network nodes, hardware design as well as principle for the program structure of software operating system and corresponding parameters were analyzed to illustrate the characteristics of monitoring system for field soil water content based on wireless sensor network, and the advantages in application of this system. [Result] Sensor nodes could correctly collect and transmit soil water content, realize stable data transmission of soil water content, indicating that wireless sensor network is suitable for real-time monitoring of field soil water content. [Conclusion] This study indicates that wireless sensor network possesses a widely application foreground in the development of agriculture.
基金Supported by National 863 Plan Project (2008AA10Z220 )Key Technological Task Project of Henan Agricultural Domain(082102140004)~~
文摘To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of the system,building the systematic structure of applied system and network system,and implementing the energy control and safety design of system.The system can reduce manpower operation and the error of manual measuration in the course of practical production,reduce the cost of agricultural production,and realize automatization of agricultural production to the largest extent to provide an effective way to realize good quality and high yield primary production,which has an important realistic meaning.
文摘Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over extended periods of time without the need for dedicated wiring.Energy harvesting provides a potential solution to this problem in many applications.This paper reviews the characteristics and energy requirements of typical sensor network nodes,assesses a range of potential ambient energy sources,and outlines the characteristics of a wide range of energy conversion devices.It then proposes a method to compare these diverse sources and conversion mechanisms in terms of their normalised power density.
文摘It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sensor Networks(UWSNs).To this end,this paper investigates the relationship between the Degree of Target Change(DoTC)and the detection period,as well as the impact of individual nodes.A Hierarchical Detection and Tracking Approach(HDTA)is proposed.Firstly,the network detection period is determined according to DoTC,which reflects the variation of target motion.Secondly,during the network detection period,each detection node calculates its own node detection period based on the detection mutual information.Taking DoTC as pheromone,an ant colony algorithm is proposed to adaptively adjust the network detection period.The simulation results show that the proposed HDTA with the optimizations of network level and node level significantly improves the detection accuracy by 25%and the network energy consumption by 10%simultaneously,compared to the traditional adaptive period detection schemes.
基金Project (Nos. 60074011 and 60574049) supported by the National Natural Science Foundation of China
文摘Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.
基金Projects 20070411065 supported by the China Postdoctoral Science Foundation0801028B by the Jiangsu Postdoctoral Science Research Foundation
文摘Aiming at the application of a wireless sensor network to locating miners in underground mine,we design a wireless sensor network location node system,considering the communication performance and the intrinsic safety. The location node system consists of a mobile node,several fixed nodes,and a sink node,all of whose circuits were designed based on CC2430. A varistor and a RC circuit were used in the reset circuit of a sensor node to guarantee the intrinsic safety by reducing discharge energy,the theoretical analysis of the discharge energy shows that the reset circuit is an intrinsic safety one. The analysis and simulation about the performance of the location node system are discussed,such as network communication delay and packet loss rate,the results show that the highest network communication delay of the system is about 0.11 seconds,and the highest packet loss rate is about 0.13,which assures the location node system has a high reliability,and can locate miners in the underground mine.
文摘Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway.Ensuring communications in heterogeneous WSNs,is a critical issue that needs to be studied.In this research paper,we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communication.Specifically,two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway.The overall system integrates many different sensors in terms of types,communication protocols,and accuracy,which can be used in many applications in realistic environments such as on land,under water,or in the air.In addition to this,a synchronous management software on ThingSpeak Web server and Blynk app is designed.In the proposed system,the token ring protocol in Zigbee network and polling mechanism in LoRa network is used.The system can operate with a packet loss rate of less than 0.5%when the communication range of the Zigbee network is 630 m,and the communication range of the LoRa network is 3.7 km.On the basis of the digital results collected on the management software,this study proves tremendous improvements in the system performance.
文摘In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.
基金Supported by National Natural Science Foundation of P. R. China (60373049) National Basic Research Program of P.R.China (2006CB 3030000)
文摘This paper introduces a parking management system based on a wireless sensor network developed by our group. The system consists of a large amount of parking space monitoring nodes, a few parking guiding nodes, a sink node and a management station. All the nodes exchange information with each other through wireless communication. The prototype of the parking management system has been implemented and the preliminary test results show that the performance of the system can satisfy the requirements of the application.
基金Supported in part by National Basic Research Program of P. R. China (2005CB321604) in part by National Natural Science Foundation of P. R. China (90207002)
文摘Wireless sensor networks have already enabled numerous embedded wireless applications such as military, environmental monitoring, intelligent building, etc. Because micro-sensor nodes are supposed to operate for months or even years with very limited battery power source, it is a challenge for researchers to obtain long operating hour without scarifying original system performances. In this paper, the energy consumption sources of the wireless sensor networks are firstly analyzed, with the digital processing and radio transceiver units being emphasized. Then, we introduce the design scheme of our energy-aware wireless sensor network (GAINS). In GAINS, techniques to conserve the energy are exploited including the energy optimization node, software and energy-efficient communication protocol. The design architecture of our ultra low power wireless sensor network (WO-LPP) is specially presented.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61473136)the 111 Project of China(Grant No.B12018)
文摘In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.
基金Supported by the National Natural Science Foundation of China(50534060)
文摘Based on the nowadays' condition, it is urgent that the gas detection cable communication system must be replaced by the wireless communication systems. The wireless sensors distributed in the environment can achieve the intelligent gas monitoring system. Apply with multilayer data fuse to design working tactics, and import the artificial neural networks to analyze detecting result. The wireless sensors system communicates with the control center through the optical fiber cable. All the gas sensor nodes distributed in coal mine are combined into an intelligent, flexible structure wireless network system, forming coal mine gas monitoring system based on wireless sensor network.
基金supported by the Army Research Office(ARO)(DAAD 19-02-1-0366,ARO W91NF-05-1-0314)the National Science Foundation(IIS-0326505,CNS-0421282)+1 种基金the Singapore SERC TSRP(0421120028)the NI Lead User grant,and the Texas Advanced Research Program(ARP)(14-748779)
文摘In unstructured environments, dynamic resource assignment is required for effective cooperation of robot teams. In some scenarios, robots are in charge of executing multiple missions simultaneously. This creates risks of deadlock due to the presence of shared resources among various missions. The main contribution of this paper is the development of a novel approach that combines the one-step look-ahead deadlock avoidance policy with dynamic resource assignment. The dynamicresource assignment is achieved using greedy resource assignment for multi-mission robot teams in the framework of a matrix-based discrete event controller. Simulation results are presented in MATLAB to discuss in detail the proposed control strategy. The paper also discusses the toolkit developed in LabVIEW which is used to implement this control framework using a suitable example.
基金the National Natural Science Foundation of China(60573043)the Natural Science Foundation of Guangdong Province(06025838)
文摘In this paper,a formal system is proposed based on beta reputation for the development of trustworthy wireless sensor networks(FRS-TWSN).Following this approach,key concepts related to reputation are formal described step by step for wireless sensor networks where sensor nodes maintain reputation for other sensors and use it to evaluate their trustworthiness.By proving some properties of beta reputation system,the beta distribution is founded to fit well to describe reputation system.Also,a case system is developed within this framework for reputation representation,updates and integration.Simulation results show this scheme not only can keep stable reputation but also can prevent the system from some attacks as bad mouthing and reputation cheating.
文摘Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs.