Acoustic vector sensor consists of pressure and particle velocity sensors,which measure the three-dimensional acoustic particle velocity,as well as the pressure at one location at the same time.By preserving the ampli...Acoustic vector sensor consists of pressure and particle velocity sensors,which measure the three-dimensional acoustic particle velocity,as well as the pressure at one location at the same time.By preserving the amplitude and phase information of the pressure and particle velocity,they possess a number of advantages over traditional scalar sensors.Signal-to-noise ratio (SNR) gain (which is often called array gain) is one of such advantages and is always interested by all of us.But it is not unchangeable if the spatial correlation of the noise field varies.Much more important,it is difficult to be given if the noise becomes complex.In this paper,spatial correlation of the vector field of isotropic volume-noise and surface-generated noise has been introduced briefly.Based on the results,the combined SNR output of a vector linear array is investigated and the maximum gain is given in the specified noise.Computer simulation shows that the output of one array in the same noise is not the same in different gestures.And then we find the best gesture through SNR calculation and obtain the biggest gain,which has important meaning to guide how to deploy an array in practice.We also should use the array with respect to the characteristics of the real ambient noise,especially in anisotropic noise field.展开更多
A new solvent polymeric membrane (SPM)pH2sensor based on 4,4'-bis (N, N-didecylamino)methyl)azobenzene as neutral carricr has been reported. It has excellent pH response characteristics with the linear response ra...A new solvent polymeric membrane (SPM)pH2sensor based on 4,4'-bis (N, N-didecylamino)methyl)azobenzene as neutral carricr has been reported. It has excellent pH response characteristics with the linear response range (1.7—13.2)much wider than that of similar SPM pH sensors reported so far. The sensor has a theoretical Nernstian response of 57.4+0.2V/pH(at 20℃)without super—Nernstian response phenomenon.展开更多
Barrier coverage of wireless sensor networks is an important issue in the detection of intruders who are attempting to cross a region of interest.However,in certain applications,barrier coverage cannot be satisfied af...Barrier coverage of wireless sensor networks is an important issue in the detection of intruders who are attempting to cross a region of interest.However,in certain applications,barrier coverage cannot be satisfied after random deployment.In this paper,we study how mobile sensors can be efficiently relocated to achieve k-barrier coverage.In particular,two problems are studied:relocation of sensors with minimum number of mobile sensors and formation of k-barrier coverage with minimum energy cost.These two problems were formulated as 0–1 integer linear programming(ILP).The formulation is computationally intractable because of integrality and complicated constraints.Therefore,we relax the integrality and complicated constraints of the formulation and construct a special model known as RELAX-RSMN with a totally unimodular constraint coefficient matrix to solve the relaxed 0–1 ILP rapidly through linear programming.Theoretical analysis and simulation were performed to verify the effectiveness of our approach.展开更多
This paper studies stochastic resonance (SR) phenomenon in a parallel array of linear elements with noise. Employing the signal-to-noise ratio (SNR) theory, it obtains the output SNR, and investigates the effects ...This paper studies stochastic resonance (SR) phenomenon in a parallel array of linear elements with noise. Employing the signal-to-noise ratio (SNR) theory, it obtains the output SNR, and investigates the effects on the output SNR of the system with signal-independent noise and signal-dependent noise respectively. Numerical results show: the curve of the output SNR is monotone with signal-independent noise; whereas SR appears with signal-dependent noise. Moreover, the output SNR enhances rapidly with the increase of N which is the number of elements in this parallel array linear system. This result may provide smart array of simple linear sensors which are capable of acting as noise-aided amplifiers.展开更多
This paper investigates the selective liquid response for Morpho didius butterfly wing scales and propose an optical model to explain the effect of different components on the liquid response. It is found out that the...This paper investigates the selective liquid response for Morpho didius butterfly wing scales and propose an optical model to explain the effect of different components on the liquid response. It is found out that the reason of the selective response is that the liquid media forms nanometre-thick films between ridge-lamellae nanostructures and changes the constructive interference wavelength. There is linear relation between the structural color of ridge-lamellae structure and index of liquid background media. The reason of vapor's responses is that the nanometre-thick liquid fi lms on ridge-lamellae nanostructures change the constructive interference wavelength. These liquid films are formed due to vapor adsorption. Therefore,the selective linear liquid response can be applied to design nano-engineered photonic liquid and vapor sensors.展开更多
High-performance control of permanent magnet synchronous motors(PMSMs)necessitates precise rotor-position feedback.However,conventional solutions,including optical encoders,resolvers,and external magnetic encoders,suf...High-performance control of permanent magnet synchronous motors(PMSMs)necessitates precise rotor-position feedback.However,conventional solutions,including optical encoders,resolvers,and external magnetic encoders,suffer from excessive axial space occupation,structural complexity,and compromised output performance.Hence,embedded magnetic encoders(EMEs)have emerged as compact and cost-effective alternatives that leverage linear Hall sensors to extract rotor angle information from internal magnetic fields.The technological evolution of EMEs in three critical dimensions are comprehensively reviewed:①Hall sensor configurations and signal acquisition methodologies across diverse motor topologies,②disturbance mechanisms and error propagation characteristics under non-ideal operational conditions,and③advanced harmonic suppression techniques and angle-decoding algorithms.Finally,the shortcomings and urgent challenges in current technological development are summarized and valuable research priorities for future studies are identified.展开更多
The detection of fully and partially defective sensors in a linear array composed of N sensors is addressed. First, the symmetrical structure of a linear array is proposed. Second, a hybrid technique based on the cult...The detection of fully and partially defective sensors in a linear array composed of N sensors is addressed. First, the symmetrical structure of a linear array is proposed. Second, a hybrid technique based on the cultural algorithm with differential evolution is developed. The symmetrical structure has two advantages: (1) Instead of finding all damaged patterns, only (N-1)/2 patterns are needed; (2) We are required to scan the region from 0° to 90°instead of from 0° to 180°. Obviously, the computational complexity can be reduced. Monte Carlo simulations were carried out to validate the performance of the proposed scheme, compared with existing methods in terms of computational time and mean square error.展开更多
A novel method of linear demodulation based on edge filter is presented. An experimental system is built up in which LPG is used as the edge filter. We achieve linear demodulation with a bandwidth of 5nm.
The Wireless Sensor Networks(WSNs)used for the monitoring applications like pipelines carrying oil,water,and gas;perimeter surveillance;border monitoring;and subway tunnel monitoring form linearWSNs.Here,the infrastru...The Wireless Sensor Networks(WSNs)used for the monitoring applications like pipelines carrying oil,water,and gas;perimeter surveillance;border monitoring;and subway tunnel monitoring form linearWSNs.Here,the infrastructure being monitored inherently forms linearity(straight line through the placement of sensor nodes).Therefore,suchWSNs are called linear WSNs.These applications are security critical because the data being communicated can be used for malicious purposes.The contemporary research of WSNs data security cannot fit in directly to linear WSN as only by capturing few nodes,the adversary can disrupt the entire service of linear WSN.Therefore,we propose a data aggregation scheme that takes care of privacy,confidentiality,and integrity of data.In addition,the scheme is resilient against node capture attack and collusion attacks.There are several schemes detecting the malicious nodes.However,the proposed scheme also provides an identification of malicious nodes with lesser key storage requirements.Moreover,we provide an analysis of communication cost regarding the number of messages being communicated.To the best of our knowledge,the proposed data aggregation scheme is the first lightweight scheme that achieves privacy and verification of data,resistance against node capture and collusion attacks,and malicious node identification in linear WSNs.展开更多
To solve the problems encountered in practical processes of magneto-optical sensing, the infinitesimal distributed-parameter model and finite-element accumulation of different dielectric properties of micromaterials w...To solve the problems encountered in practical processes of magneto-optical sensing, the infinitesimal distributed-parameter model and finite-element accumulation of different dielectric properties of micromaterials were used to describe the evolution of light polarization states, instead of the previously commonly used method of lumped-parameter simulation, thus essentially explaining the mechanism of sensing, magneto-optical effects, and related factors, and achieving multiphysics coupling using the COMSOL finite-element analysis method. Considering the cases of the Faraday effect without and with line birefringence, the magneto-optical effect and output characteristics of an infinitesimal magneto-optical sensor were simulated and studied. The results verified the effectiveness of the infinitesimal sensor model. Because the magnetic field, stress, and temperature changes alter the dielectric properties of magneto-optical materials, the finite-element accumulation method lays a good foundation for research on theoretical analysis and performance of magneto-optical sensors affected by factors such as the magnetic field, temperature, and stress.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.50909028
文摘Acoustic vector sensor consists of pressure and particle velocity sensors,which measure the three-dimensional acoustic particle velocity,as well as the pressure at one location at the same time.By preserving the amplitude and phase information of the pressure and particle velocity,they possess a number of advantages over traditional scalar sensors.Signal-to-noise ratio (SNR) gain (which is often called array gain) is one of such advantages and is always interested by all of us.But it is not unchangeable if the spatial correlation of the noise field varies.Much more important,it is difficult to be given if the noise becomes complex.In this paper,spatial correlation of the vector field of isotropic volume-noise and surface-generated noise has been introduced briefly.Based on the results,the combined SNR output of a vector linear array is investigated and the maximum gain is given in the specified noise.Computer simulation shows that the output of one array in the same noise is not the same in different gestures.And then we find the best gesture through SNR calculation and obtain the biggest gain,which has important meaning to guide how to deploy an array in practice.We also should use the array with respect to the characteristics of the real ambient noise,especially in anisotropic noise field.
基金Project supported by the National Natural Science Foundation of China partially by Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Academia Sinica.
文摘A new solvent polymeric membrane (SPM)pH2sensor based on 4,4'-bis (N, N-didecylamino)methyl)azobenzene as neutral carricr has been reported. It has excellent pH response characteristics with the linear response range (1.7—13.2)much wider than that of similar SPM pH sensors reported so far. The sensor has a theoretical Nernstian response of 57.4+0.2V/pH(at 20℃)without super—Nernstian response phenomenon.
基金supported by the NSFC(U1536206,61232016,U1405254,61373133,61502242,71401176)BK20150925the PAPD fund
文摘Barrier coverage of wireless sensor networks is an important issue in the detection of intruders who are attempting to cross a region of interest.However,in certain applications,barrier coverage cannot be satisfied after random deployment.In this paper,we study how mobile sensors can be efficiently relocated to achieve k-barrier coverage.In particular,two problems are studied:relocation of sensors with minimum number of mobile sensors and formation of k-barrier coverage with minimum energy cost.These two problems were formulated as 0–1 integer linear programming(ILP).The formulation is computationally intractable because of integrality and complicated constraints.Therefore,we relax the integrality and complicated constraints of the formulation and construct a special model known as RELAX-RSMN with a totally unimodular constraint coefficient matrix to solve the relaxed 0–1 ILP rapidly through linear programming.Theoretical analysis and simulation were performed to verify the effectiveness of our approach.
文摘This paper studies stochastic resonance (SR) phenomenon in a parallel array of linear elements with noise. Employing the signal-to-noise ratio (SNR) theory, it obtains the output SNR, and investigates the effects on the output SNR of the system with signal-independent noise and signal-dependent noise respectively. Numerical results show: the curve of the output SNR is monotone with signal-independent noise; whereas SR appears with signal-dependent noise. Moreover, the output SNR enhances rapidly with the increase of N which is the number of elements in this parallel array linear system. This result may provide smart array of simple linear sensors which are capable of acting as noise-aided amplifiers.
基金Supported by the National Natural Science Foundation of China(51305129)the Natural Science Foundation of Hubei Province(Q20151411)
文摘This paper investigates the selective liquid response for Morpho didius butterfly wing scales and propose an optical model to explain the effect of different components on the liquid response. It is found out that the reason of the selective response is that the liquid media forms nanometre-thick films between ridge-lamellae nanostructures and changes the constructive interference wavelength. There is linear relation between the structural color of ridge-lamellae structure and index of liquid background media. The reason of vapor's responses is that the nanometre-thick liquid fi lms on ridge-lamellae nanostructures change the constructive interference wavelength. These liquid films are formed due to vapor adsorption. Therefore,the selective linear liquid response can be applied to design nano-engineered photonic liquid and vapor sensors.
基金Supported by the National Natural Science Foundation of China(524B2097)SEU Innovation Capability Enhancement Plan for Doctoral Students.
文摘High-performance control of permanent magnet synchronous motors(PMSMs)necessitates precise rotor-position feedback.However,conventional solutions,including optical encoders,resolvers,and external magnetic encoders,suffer from excessive axial space occupation,structural complexity,and compromised output performance.Hence,embedded magnetic encoders(EMEs)have emerged as compact and cost-effective alternatives that leverage linear Hall sensors to extract rotor angle information from internal magnetic fields.The technological evolution of EMEs in three critical dimensions are comprehensively reviewed:①Hall sensor configurations and signal acquisition methodologies across diverse motor topologies,②disturbance mechanisms and error propagation characteristics under non-ideal operational conditions,and③advanced harmonic suppression techniques and angle-decoding algorithms.Finally,the shortcomings and urgent challenges in current technological development are summarized and valuable research priorities for future studies are identified.
基金Project supported by the Higher Education Commission of Pakistan
文摘The detection of fully and partially defective sensors in a linear array composed of N sensors is addressed. First, the symmetrical structure of a linear array is proposed. Second, a hybrid technique based on the cultural algorithm with differential evolution is developed. The symmetrical structure has two advantages: (1) Instead of finding all damaged patterns, only (N-1)/2 patterns are needed; (2) We are required to scan the region from 0° to 90°instead of from 0° to 180°. Obviously, the computational complexity can be reduced. Monte Carlo simulations were carried out to validate the performance of the proposed scheme, compared with existing methods in terms of computational time and mean square error.
基金Supported by the National '863' high technology project (2002 AA313110)
文摘A novel method of linear demodulation based on edge filter is presented. An experimental system is built up in which LPG is used as the edge filter. We achieve linear demodulation with a bandwidth of 5nm.
文摘The Wireless Sensor Networks(WSNs)used for the monitoring applications like pipelines carrying oil,water,and gas;perimeter surveillance;border monitoring;and subway tunnel monitoring form linearWSNs.Here,the infrastructure being monitored inherently forms linearity(straight line through the placement of sensor nodes).Therefore,suchWSNs are called linear WSNs.These applications are security critical because the data being communicated can be used for malicious purposes.The contemporary research of WSNs data security cannot fit in directly to linear WSN as only by capturing few nodes,the adversary can disrupt the entire service of linear WSN.Therefore,we propose a data aggregation scheme that takes care of privacy,confidentiality,and integrity of data.In addition,the scheme is resilient against node capture attack and collusion attacks.There are several schemes detecting the malicious nodes.However,the proposed scheme also provides an identification of malicious nodes with lesser key storage requirements.Moreover,we provide an analysis of communication cost regarding the number of messages being communicated.To the best of our knowledge,the proposed data aggregation scheme is the first lightweight scheme that achieves privacy and verification of data,resistance against node capture and collusion attacks,and malicious node identification in linear WSNs.
基金supported by the National Natural Science Foundation of China(Grant No.51277066)
文摘To solve the problems encountered in practical processes of magneto-optical sensing, the infinitesimal distributed-parameter model and finite-element accumulation of different dielectric properties of micromaterials were used to describe the evolution of light polarization states, instead of the previously commonly used method of lumped-parameter simulation, thus essentially explaining the mechanism of sensing, magneto-optical effects, and related factors, and achieving multiphysics coupling using the COMSOL finite-element analysis method. Considering the cases of the Faraday effect without and with line birefringence, the magneto-optical effect and output characteristics of an infinitesimal magneto-optical sensor were simulated and studied. The results verified the effectiveness of the infinitesimal sensor model. Because the magnetic field, stress, and temperature changes alter the dielectric properties of magneto-optical materials, the finite-element accumulation method lays a good foundation for research on theoretical analysis and performance of magneto-optical sensors affected by factors such as the magnetic field, temperature, and stress.