期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Effect of element Ce on the strain rate sensitivity of Mg-Zn-Zr alloy
1
作者 Chenkun Xu Zhi Wang +3 位作者 Le Zhou Feng Wang Ziqi Wei Pingli Mao 《Journal of Magnesium and Alloys》 2025年第8期4005-4019,共15页
Investigations into the strain rate sensitivity of magnesium(Mg)alloys represent a current research focus in materials science.However,most studies have examined strain rate sensitivity in single alloy,lacking systema... Investigations into the strain rate sensitivity of magnesium(Mg)alloys represent a current research focus in materials science.However,most studies have examined strain rate sensitivity in single alloy,lacking systematic comparisons between different alloys.In the present study,a series of ZK60-xCe(x=0,0.3,0.8,1.3)alloys were fabricated via hot extrusion deformation.The microstructure evolution and strain rate sensitivity of these alloys under dynamic compressive loading were systematically investigated.According to thermal activation theory calculations,the strain rate sensitivities of ZK60-xCe alloys are predominantly governed by their deformation mechanisms.The enhanced strain rate sensitivity observed in Ce-containing ZK60 alloys is primarily attributed to their high dislocation density.This correlation stems from two key factors:(1)Ce-containing alloys demonstrate significantly higher ΔE and ΔT values compared to the base ZK60 alloy,providing the necessary energy conditions for high-density dislocation generation;and(2)the Ce addition effectively promotes (c+a) slip activation and facilitates cross-slip behavior.It is hoped that this work can provide a new perspective for the study of strain rate sensitivity in Mg alloys and offer a methodology for comparing strain rate sensitivity among different alloys. 展开更多
关键词 Mg alloy Strain rate sensitivity Dynamic compression Deformation mechanism
在线阅读 下载PDF
Cooling Rate Sensitivity of RE-Containing Grain Refiner and Its Impact on the Microstructure and Mechanical Properties of A356 Alloy 被引量:3
2
作者 Hua-Rui Zhang Zhen-Bang Liu +2 位作者 Zi-Zhuo Li Guo-Wei Li Hu Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第5期414-421,共8页
The cooling rate sensitivities of A1TiB, RE and A1TiB-RE refiners were investigated using laboratory experiments and the actual industrial applications of A356 automotive wheel via low pressure die casting technology.... The cooling rate sensitivities of A1TiB, RE and A1TiB-RE refiners were investigated using laboratory experiments and the actual industrial applications of A356 automotive wheel via low pressure die casting technology. Their impact mechanisms on the microstructure and mechanical properties of the A356 alloy were discussed. The results demonstrated that the AITiB-RE refiner possessed most effective and synergetic refinement effects compared to the individual A1TiB or RE refiners. The A1TiB-RE refiner exhibited the least sensitivity to the cooling rate changes than the other refiners. The comprehensive properties of alloy wheel refined by the A1TiB-RE refiner were improved significantly. The tensile strength, yield strength, and elongation of wheel spoke improved by approximately 11.3%, 10.8% and 44.1%, respectively. The property difference values of the tensile strength, yield strength, and elongation in different positions of the wheel decreased from 14.8%, 31.2% and 47.7% to 8.6%, 27.1% and 30.9%, respectively. 展开更多
关键词 Grain refinement Cooling rate sensitivity A356 alloy MICROSTRUCTURE Mechanicalproperties
原文传递
Strain rate sensitivity of a 1.5 GPa nanotwinned steel 被引量:3
3
作者 R.D.Liu Y.Z.Li +3 位作者 L.Lin C.P.Huang Z.H.Cao M.X.Huang 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第11期1352-1356,共5页
Two distinct regimes of strain rate sensitivity on yield strength are found in a high-strength nantwinned steel.The yield strength increases from 1410 to 1776 MPa when the strain rate increases from 10–3 to 1400 s-1.... Two distinct regimes of strain rate sensitivity on yield strength are found in a high-strength nantwinned steel.The yield strength increases from 1410 to 1776 MPa when the strain rate increases from 10–3 to 1400 s-1.It is proposed from the measured small activation volume that the yielding of the nanotwinned steel at higher strain rates is governed by the dislocation bowing out from the carbon atmosphere.At lower strain rates,however,the yielding is controlled by the continuous re-pinning of dislocations due to the fast diffused carbon atoms,which leads to the relative insensitivity of yield strength to the strain rate. 展开更多
关键词 Nanotwinned steel Strain rate sensitivity Hokinson tensile bar TWINNING Twinning-induced plasticity steel
原文传递
Strain hardening behavior, strain rate sensitivity and hot deformation maps of AISI 321 austenitic stainless steel 被引量:3
4
作者 Mehdi Shaban Ghazani Beitallah Eghbali 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第11期1799-1810,共12页
Hot compression tests were performed on AISI 321 austenitic stainless steel in the deformation temperature range of 800–1200℃ and constant strain rates of 0.001,0.01,0.1,and 1 s^(−1).Hot flow curves were used to det... Hot compression tests were performed on AISI 321 austenitic stainless steel in the deformation temperature range of 800–1200℃ and constant strain rates of 0.001,0.01,0.1,and 1 s^(−1).Hot flow curves were used to determine the strain hardening exponent and the strain rate sensitivity exponent,and to construct the processing maps.Variations of the strain hardening exponent with strain were used to predict the microstructural evolutions during the hot deformation.Four variations were distinguished reflecting the different microstructural changes.Based on the analysis of the strain hardening exponent versus strain curves,the microstructural evolutions were dynamic recovery,single and multiple peak dynamic recrystallization,and interactions between dynamic recrystallization and precipitation.The strain rate sensitivity variations at an applied strain of 0.8 and strain rate of 0.1 s^(−1) were compared with the microstructural evolutions.The results demonstrate the existence of a reliable correlation between the strain rate sensitivity values and evolved microstructures.Additionally,the power dissipation map at the applied strain of 0.8 was compared with the resultant microstructures at predetermined deformation conditions.The microstructural evolutions strongly correlated to the power dissipation ratio,and dynamic recrystallization occurred completely at lower power dissipation ratios. 展开更多
关键词 strain hardening strain rate sensitivity processing map AISI 321 austenitic stainless steel hot compression
在线阅读 下载PDF
Strain rate sensitivity of closed cell aluminium fly ash foam 被引量:2
5
作者 Manmohan DASS GOEL VASANT A.MATSAGAR +1 位作者 Anil K.GUPTA Steffen MARBURG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1080-1089,共10页
With the increasing use of metal foams in various engineering applications, investigation of their dynamic behaviour under varying strain rate is necessary. Closed cell aluminium fly ash foam developed through liquid ... With the increasing use of metal foams in various engineering applications, investigation of their dynamic behaviour under varying strain rate is necessary. Closed cell aluminium fly ash foam developed through liquid metallurgy route was investigated for its stress--strain behaviour at different strain rates ranging from 700 s^-1 to 1950 s^-1. The numerical model of split Hopkinson pressure bar (SHPB) was simulated using commercially available finite element code Abaqus/Explicit. Validation of numerical simulation was carried out using available experimental and numerical results. Full scale stress--strain curves wez'e developed for various strain rates to study the effect of strain rate on compressive strength and energy absorption. The results showed that the closed cell aluminium fly ash foam is sensitive to strain rate. 展开更多
关键词 high strain rate metal foam strain rate sensitivity numerical simulation split Hopkinson pressure bar
在线阅读 下载PDF
STRAIN RATE SENSITIVITY OF ULTRAFINE-GRAINED Cu WITH NANOSIZED TWINS 被引量:1
6
作者 L.X. Liu X.H. Chen L. Lu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第5期313-318,共6页
An ultrafine-grained Cu sample with a high density of growth twins was synthesized by means of pulsed electrodeposition technique. The strain rate sensitivity of the Cu sample was measured by strain rate cycling tests... An ultrafine-grained Cu sample with a high density of growth twins was synthesized by means of pulsed electrodeposition technique. The strain rate sensitivity of the Cu sample was measured by strain rate cycling tests under tension. The effects of grain size as well as twin density on the strength and strain rate sensitivity were discussed. 展开更多
关键词 COPPER nanosized twin strain rate sensitivity deformation mechanism
在线阅读 下载PDF
Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy 被引量:1
7
作者 Lili Xiao Ping Huang Fei Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第27期251-259,共9页
It is well documented that the strain rate sensitivity(m)increases at refined grain size for face-centered cubic(FCC)metals and alloys.Through a series of nanoindentation testing,however,we experimentally demonstrated... It is well documented that the strain rate sensitivity(m)increases at refined grain size for face-centered cubic(FCC)metals and alloys.Through a series of nanoindentation testing,however,we experimentally demonstrated a striking departure from conventional FCC metals that Co Cr Fe Mn Ni high entropy alloy(HEA)with FCC lattice structure exhibits monotonously decreased m as grain size reduced fromμ30.3m to 7.2 nm.Moreover,the apparent activation volume v*,which generally shows an opposite trend of m,exhibited the identical decreasing trend with reduced grain size as that of m.Such an unusual trend of m and its correlation with v*in the FCC HEA alloys can be understood by a distinct deformationmechanism-transitions and unique dislocation morphology evolution that differs from conventional FCC metals. 展开更多
关键词 High entropy alloy Strain rate sensitivity Activation volume Deformation mechanism Wavy dislocation
原文传递
Positive Strain Rate Sensitivity and Deformation Behavior of a Fe–29Mn–3Al–3Si TWIP Steel 被引量:1
8
作者 Shucheng Shen Cuilan Wu +1 位作者 Pan Xie Yuanrui Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第11期1825-1836,共12页
The Fe-29 Mn-3 Al-3 Si twin-induced plasticity(TWIP)steel is used to conduct quasi-static compression and dynamic impact deformation with strain rates ranging from 8.3×10^(-4) to 3800 s^(-1).The microstructures a... The Fe-29 Mn-3 Al-3 Si twin-induced plasticity(TWIP)steel is used to conduct quasi-static compression and dynamic impact deformation with strain rates ranging from 8.3×10^(-4) to 3800 s^(-1).The microstructures and properties of deformed samples under different strain rates were investigated comparatively.These results show that positive strain rate sensitivity was observed with the increase in strain rates and that there was a significant difference in strain rate sensitivity factor(m)between quasi-static compression(m=0.029)and dynamic impact deformation(m=0.190).Compared to the quasi-static compression,the dynamic impact deformation exhibited higher yield strength.Microstructural examination reveals that the primary twins were frequently found during the quasi-static compression process,and the secondary twins were rarely observed.However,the secondary and multi-fold deformation twins were florescent in the dynamic impact samples.At the initial stage of dynamic impact deformation,partial dislocations and staking faults on multiple conjugate{111}planes were simultaneously activated and produced a large number of Lomer-Cottrell dislocations,resulting in a large increase in yield strength during dynamic impact. 展开更多
关键词 TWIP steel Dynamic deformation Strain rate sensitivity Multi-fold deformation twins
原文传递
Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates:A comparison of Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu vs Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu 被引量:1
9
作者 Y.F.Zhao H.H.Chen +5 位作者 D.D.Zhang J.Y.Zhang Y.Q.Wang K.Wu G.Liu J.Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第21期199-213,共15页
In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,an... In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,and comparatively study He-ion irradiation effects on their microstructure and mechanical properties.It ap-pears that the as-deposited HEA/Cu NLs manifest two size h-dependent hardness regimes(i.e.,increased hardness at small h and hardness plateau at large h),while the He-implanted ones exhibit monotonically increased hardness.Contrary to the fashion that smaller h renders less irradiation hardening in bimetal NLs,the Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs manifest the trend that smaller h leads to greater irradiation hard-ening.By contrast,the Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs exhibit the maximum irradiation hardening at a critical h=50 nm.Below this critical size,smaller h results in lower radiation hardening(similar to bimetal NLs),while above this size,smaller h results in greater radiation hardening(similar to Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs).Moreover,these transformable HEA/Cu NLs display inverse h-dependent strain rate sensitivity(SRS m)before and after He-ion irradiation.Nevertheless,compared with as-deposited samples,the irradi-ated Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs display reduced SRS,while the irradiated Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs dis-play enhanced SRS.Such unusual size-dependent irradiation strengthening and inverse h effect on SRS in irradiated samples were rationalized by considering the blocking effects of He bubbles on dislocation nucleation and motion,i.e.,dislocations shearing or bypassing He bubbles. 展开更多
关键词 High entropy alloy/metal nanolaminates Interfaces Irradiation hardening Strain rate sensitivity Size effects
原文传递
Estimation of enhanced low dose rate sensitivity mechanisms using temperature switching irradiation on gate-controlled lateral PNP transistor 被引量:1
10
作者 Xiao-Long Li Wu Lu +7 位作者 Xin Wang Xin Yu Qi Guo Jing Sun Mo-Han Liu Shuai Yao Xin-Yu Wei Cheng-Fa He 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期342-350,共9页
The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled l... The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled lateral PNP transistor(GLPNP)that used to extract the interface traps(Nit)and oxide trapped charges(Not).Electrical characteristics in GLPNP transistors induced by ^(60)Co gamma irradiation are measured in situ as a function of total dose,showing that generation of Nit in the oxide is the primary cause of base current variations for the GLPNP.Based on the analysis of the variations of Nit and Not,with switching the temperature,the properties of accelerated protons release and suppressed protons loss play critical roles in determining the increased Nit formation leading to the base current degradation with dose accumulation.Simultaneously the hydrogen cracking mechanisms responsible for additional protons release are related to the neutralization of Not extending enhanced Nit buildup.In this study the switched temperature irradiation has been employed to conservatively estimate the ELDRS of GLPNP,which provides us with a new insight into the test technique for ELDRS. 展开更多
关键词 ionizing radiation damage enhanced low dose rate sensitivity(ELDRS) switched temperature irradiation gate-controlled lateral PNP transistor(GLPNP)
原文传递
Strain rate sensitivity and activation volume of electrodeposited nanocrystalline Ni and Ni-Co alloys
11
作者 LIAN Jianshe,GU Changdong,LI Guangyu,and JIANG Qing Key Laboratory of Automobile Materials,Ministry of Education,Department of Materials Science and Engineering,Jilin University,Changchun 130025,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期134-138,共5页
Tensile deformation behaviors of the electrodeposited 40 nm grain sized Ni,25 nm Ni-1.7 wt.%Co,and 13 nm Ni-8.6 wt.%Co alloys at various strain rates and room temperature were reviewed with emphasis on strain rate sen... Tensile deformation behaviors of the electrodeposited 40 nm grain sized Ni,25 nm Ni-1.7 wt.%Co,and 13 nm Ni-8.6 wt.%Co alloys at various strain rates and room temperature were reviewed with emphasis on strain rate sensitivity and activation volume,respectively.It is found that the strain rate sensitivity and activation volume were strongly grain size dependent.An analytic model based on the bow out of a single dislocation well predicted the relationship between the strain rate sensitivity and the activation volumes for these nanocrystaline metals. 展开更多
关键词 NANOCRYSTALLINE mechanical properties strain rate sensitivity activation volume Ni-Co alloy NI
在线阅读 下载PDF
Layer Thickness-Dependent Hardness and Strain Rate Sensitivity of Cu–Al/Al Nanostructured Multilayers
12
作者 Ya-Qiang Wang Zhao-Qi Hou +4 位作者 Jin-Yu Zhang Xiao-Qing Liang Gang Liu Guo-Jun Zhang Jun Sun 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第2期156-162,共7页
Cu-Al/Al nanostructured metallic multilayers with Al layer thickness hAl varying from 5 to 100 nm were prepared, and their mechanical properties and deformation behaviors were studied by nanoindentation testing. The r... Cu-Al/Al nanostructured metallic multilayers with Al layer thickness hAl varying from 5 to 100 nm were prepared, and their mechanical properties and deformation behaviors were studied by nanoindentation testing. The results showed that the hardness increased drastically with decreasing hAl down to about 20 nm, whereafter the hardness reached a plateau that approaches the hardness of the alloyed Cu-Al monolithic thin films. The strain rate sensitivity (SRS, m), however, decreased monotonically with reducing hAl. The layer thickness-dependent strengthening mechanisms were discussed, and it was revealed that the alloyed Cu-Al nanolayers dominated at hAl≤ 20 nm, while the crystalline Al nanolayers dominated at hAl 〉 20 nm. The plastic deformation was mainly related to the ductile Al nanolayers, which was responsible for the monotonic evolution of SRS with hAl. In addition, the hAFdependent hardness and SRS were quanti- tatively modeled in light of the strengthening mechanisms at different length scales. 展开更多
关键词 Nanostructured films Cu-Al/Al multilayers HARDNESS Strain rate sensitivity Layer thickness dependence
原文传递
Simultaneously Enhanced Strength and Fracture Resistance in HfNbTaTiZr Refractory High-Entropy Alloy at Higher Strain Rate
13
作者 Hong Chen Ruitao Qu +2 位作者 Haotian Ma Kexing Song Feng Liu 《Acta Metallurgica Sinica(English Letters)》 2025年第4期529-541,共13页
The effects of strain rate on tensile properties and fracture behavior of HfNbTaTiZr refractory high-entropy alloy (RHEA) were investigated. With the increase of strain rate in the range from 0.0001 to 0.1 s^(−1), the... The effects of strain rate on tensile properties and fracture behavior of HfNbTaTiZr refractory high-entropy alloy (RHEA) were investigated. With the increase of strain rate in the range from 0.0001 to 0.1 s^(−1), the yield strength increases from 740 to 825 MPa, demonstrating a strain rate sensitivity coefficient of 0.0173. Notably, while the uniform elongation diminished with rising strain rates, the fracture elongation of the RHEA remained constant at ~ 43%, suggesting an enhanced non-uniform elongation and an improved resistance to tensile fracture. Single-edge notch tension test further proves that the notch toughness increases at elevated loading rates. The complete work-hardening rate curves were plotted, and the work-hardening ability of the RHEA was found not decreasing significantly after necking, especially at high strain rate. The fracture of tensile samples across all the strain rates was dominated by void growth and coalesce, with dimples on the fracture surface being smaller at higher strain rates. This work reveals an unconventional increase in fracture resistance at higher strain rates, further indicating that ductile RHEAs may possess superior potential for use in structural applications subjected to high strain rate loading. 展开更多
关键词 Refractory high-entropy alloy HfNbTaTiZr Strain rate sensitivity Tensile property Notch toughness
原文传递
A review of the experimental and numerical studies on the compression behavior of the additively produced metallic lattice structures at high and low strain rates
14
作者 Muhammad Arslan Bin Riaz Mustafa Guden 《Defence Technology(防务技术)》 2025年第7期1-49,共49页
Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in... Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures. 展开更多
关键词 Metallic lattice structures Additive manufacturing Strain rate sensitivity MICROSTRUCTURE Dynamic compression High strain rate loading MODELLING
在线阅读 下载PDF
Temperature and loading-rate dependent critical stress intensity factor of dislocation nucleation from crack tip:Atomistic insights into cracking at slant twin boundaries in nano-twinned TiAl alloys
15
作者 Rong Fu Zhiyuan Rui +3 位作者 Jun-Ping Du Shihao Zhang Fan-Shun Meng Shigenobu Ogata 《Journal of Materials Science & Technology》 2025年第19期290-303,共14页
This paper investigates the temperature and loading rate dependencies of the critical stress intensity fac-tor(KIC)for dislocation nucleation at crack tips.We develop a new KIC formula with a generalized form by incor... This paper investigates the temperature and loading rate dependencies of the critical stress intensity fac-tor(KIC)for dislocation nucleation at crack tips.We develop a new KIC formula with a generalized form by incorporating the atomistic reaction pathway analysis into Transition State Theory(TST),which cap-tures the KIC of the first dislocation nucleation event at crack tips and its sensitivity to temperature and loading rates.We use this formula and atomistic modeling information to specifically calculate the KIC for quasi-two-dimensional crack tips located at various slant twin boundaries in nano-twinned TiAl al-loys across a wide range of temperatures and strain rates.Our findings reveal that twinning dislocation nucleation at the crack tip dominates crack propagation when twin boundaries(TBs)are tilted at 15.79°and 29.5°.Conversely,when TBs tilt at 45.29°,54.74°,and 70.53°,dislocation slip becomes the preferred mode.Additionally,at TB tilts of 29.5°and 70.53°,at higher temperatures above 800 K and typical exper-imental loading rates,both dislocation nucleation modes can be activated with nearly equal probability.This observation is particularly significant as it highlights scenarios that molecular dynamics simulations,due to their time scale limitations,cannot adequately explore.This insight underscores the importance of analyzing temperature and loading rate dependencies of the KIC to fully understand the competing mechanisms of dislocation nucleation and their impact on material behavior. 展开更多
关键词 CRACK Dislocation nucleation Critical stress intensity factor Temperature and loading rate sensitivity Twin boundary Atomistic simulation TiAl alloy
原文传递
Uniaxial compressive behavior of equal channel angular pressing Al at wide temperature and strain rate range 被引量:1
16
作者 汤忠斌 索涛 +3 位作者 张部声 李玉龙 赵峰 范学领 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2447-2452,共6页
Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress,... Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates. 展开更多
关键词 ultrafine-grained materials equal channel angular pressing AL mechanical behavior strain rate sensitivity temperature dependence activation volume
在线阅读 下载PDF
The strain rate sensitive and anisotropic behavior of rare-earth magnesium alloy ZEK100 sheet 被引量:6
17
作者 H.Wang X.Sun +4 位作者 S.Kurukuri M.J.Worswick D.Y.Li Y.H.Peng P.D.Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期882-891,共10页
To overcome the limitation in formability at room temperature,manufacturers have developed magnesium alloys with remarkable properties by adding rare-earth elements.The rare-earth magnesium alloys behave differently f... To overcome the limitation in formability at room temperature,manufacturers have developed magnesium alloys with remarkable properties by adding rare-earth elements.The rare-earth magnesium alloys behave differently from the conventional alloys,especially with respect to their coupled anisotropic and strain rate sensitive behavior.In the current work,such behavior of the rare-earth Mg alloy ZEK100 sheet at room temperature is investigated with the aid of the elastic viscoplastic self-consistent polycrystal plasticity model.Different strain rate sensitivities(SRSs)for various deformation modes are employed by the model to simulate the strain rate sensitive behaviors under different loading directions and loading rates.Good agreement between the experiments and simulations reveals the importance and necessity of using different SRSs for each deformation mode in hexagonal close-packed metals.Furthermore,the relative activities of each deformation mode and the texture evolution during different loadings are discussed.The anisotropic and strain rate sensitive behavior is ascribed to the various operating deformation modes with different SRSs during loading along different directions. 展开更多
关键词 Rare-earth magnesium alloy Strain rate sensitivity TWINNING Crystal plasticity
在线阅读 下载PDF
Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper 被引量:4
18
作者 Xin-hua Liu Hai-you Huang Jian-xin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第7期687-695,共9页
Lotus-type porous copper was fabricated by unidirectional solidification, and compressive experiments were subsequently conducted in the strain rate range of 10-3-2400 s-1 with the compressive direction parallel to th... Lotus-type porous copper was fabricated by unidirectional solidification, and compressive experiments were subsequently conducted in the strain rate range of 10-3-2400 s-1 with the compressive direction parallel to the pores. A GLEEBLE-1500 thermal-mechanical simulation system and a split Hopkinson pressure bar (SHPB) were used to investigate the effect of strain rate on the compressive deforma-tion behaviors of lotus-type porous copper. The influence mechanism of strain rate was also analyzed by the strain-controlling method and by high-speed photography. The results indicated that the stress-strain curves of lotus-typed porous copper consist of a linear elastic stage, a plateau stage, and a densification stage at various strain rates. At low strain rate (〈1.0 s^-1), the strain rate had little influence on the stress-strain curves; but when the strain rate exceeded 1.0 s^-1, it was observed to strongly affect the plateau stage, showing obvious strain-rate-hardening characteristics. Strain rate also influenced the densification initial strain. The densification initial strain at high strain rate was less than that at low strain rate. No visible inhomogeneous deformation caused by shockwaves was observed in lotus-type porous copper during high-strain-rate deformation. However, at high strain rate, the bending deformation characteristics of the pore walls obviously differed from those at low strain rate, which was the main mechanism by which the plateau stress exhibited strain-rate sensitivity when the strain rate exceeded a certain value and exhibited less densification initial strain at high strain rate. 展开更多
关键词 porous materials COPPER directional solidification strain rate sensitivity deformation modes stress-strain curves
在线阅读 下载PDF
Effects of Strain Rate and Plastic Work on Martensitic Transformation Kinetics of Austenitic Stainless Steel 304 被引量:2
19
作者 Fang PENG Xiang-huai DONG +1 位作者 Kai LIU Huan-yang XIE 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第10期931-936,共6页
The martensitic transformation behavior and mechanical properties of austenitic stainless steel 304 were studied by both experiments and numerical simulation. Room temperature tensile tests were carried out at various... The martensitic transformation behavior and mechanical properties of austenitic stainless steel 304 were studied by both experiments and numerical simulation. Room temperature tensile tests were carried out at various strain rates to investigate the effect on volume fraction of martensite, temperature increase and flow stress. The results show that with increasing strain rate, the local temperature increases, which suppresses the transformation of martensite. To take into account the dependence on strain level, strain rate sensitivity and thermal effects, a kinetic model of martensitic transformation was proposed and constitutive modeling on stress-strain response was conducted. The validity of the proposed model has been proved by comparisons between simulation results and experimental ones. 展开更多
关键词 stainless steel 304 martensitic transformation KINETICS constitutive model strain rate sensitivity
原文传递
Sensitivity analysis of influencing parameters in cavern stability 被引量:9
20
作者 Abolfazl Abdollahipour Reza Rahmannejad 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期707-710,共4页
In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of c... In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of cavern,a sensitivity analysis has been performed on a single cavern in various rock mass qualities according to RMR using Phase 2.The stability of cavern has been studied by investigating the side wall deformation.Results showed that most sensitive properties are coefficient of lateral stress and modulus of deformation.Also parameters of Hoek-Brown criterion and r c have no sensitivity when cavern is in a perfect elastic state.But in an elasto-plastic state,parameters of Hoek-Brown criterion and r c affect the deformability;such effect becomes more remarkable with increasing plastic area.Other parameters have different sensitivities concerning rock mass quality(RMR).Results have been used to propose the best set of parameters for study on prediction of sidewall displacement. 展开更多
关键词 sensitivity analysis Cavern stability Numerical methods RMR rating system
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部