Carbon nanotube-reinforced cement composites have gained significant attention due to their enhanced mechanical properties,particularly in compressive and flexural strength.Despite extensive research,the influence of ...Carbon nanotube-reinforced cement composites have gained significant attention due to their enhanced mechanical properties,particularly in compressive and flexural strength.Despite extensive research,the influence of various parameters on these properties remains inadequately understood,primarily due to the complex interactions within the composites.This study addresses this gap by employingmachine learning techniques to conduct a sensitivity analysis on the compressive and flexural strength of carbon nanotube-reinforced cement composites.It systematically evaluates nine data-preprocessing techniques and benchmarks eleven machine-learning algorithms to reveal tradeoffs between predictive accuracy and computational complexity,which has not previously been explored in carbon nanotube-reinforced cement composite research.In this regard,four main factors are considered in the sensitivity analysis,which are the machine learning model type,the data pre-processing technique,and the effect of the concrete constituent materials on the compressive and flexural strength both globally through feature importance assessment and locally through partial dependence analysis.Accordingly,this research optimizes ninety-nine models representing combinations of eleven machine learning algorithms and nine data preprocessing techniques to accurately predict the mechanical properties of carbon nanotube-reinforced cement composites.Moreover,the study aims to unravel the relationships between different parameters and their impact on the composite’s strength by utilizing feature importance and partial dependence analyses.This research is crucial as it provides a comprehensive understanding of the factors influencing the performance of carbon nanotube-reinforced cement composites,which is vital for their efficient design and application in construction.The use of machine learning in this context not only enhances predictive accuracy but also offers insights that are often challenging to obtain through traditional experimental methods.The findings contribute to the field by highlighting the potential of advanced data-driven approaches in optimizing and understanding advanced composite materials,paving the way for more durable and resilient construction materials.展开更多
This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curi...This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curing duration on the unconfined compressive strength,initial resistivity and pressure sensitivity of the improved soil was systematically analysed.The results showed that the unconfined compressive strength varied non⁃monotonically with increasing CFP dosage,reaching a peak at a dosage of 1.6%.Furthermore,the initial resistivity showed slight variations under different moisture conditions but eventually converged towards the conductive percolation threshold at a dosage of 2.4%.It is worth noting that CFP reinforced lime⁃improved silty sand(CRLS)exhibit a clear dynamic synchronization of strain with stress and resistivity rate of variation.The pressure sensitivity was optimized with CFP dosages ranging from 1.6%to 2.0%.Both insufficient and excessive dosages had a negative impact on pressure sensitivity.It is important to consider the weakening effect of high moisture content on the pressure sensitivity of the specimens in practical applications.展开更多
Background:Gallic acid(GA),a plant-derived polyphenol,possesses diverse biological functions such as reducing inflammation and against tumors.Currently,the influence of GA on the resistance of esophageal squamous cell...Background:Gallic acid(GA),a plant-derived polyphenol,possesses diverse biological functions such as reducing inflammation and against tumors.Currently,the influence of GA on the resistance of esophageal squamous cell carcinoma(ESCC)cells to cisplatin(DDP)is not well understood.Methods:Cell counting kit-8 assay examined how GA affected KYSE30 and TE-1 cell viability.5-Ethynyl-2′-deoxyuridine and TdT-mediated dUTP Nick-End labeling staining detected cell proliferation and apoptosis.Clone formation assay,flow cytometry,Carboxyfluorescein diacetate succinimidyl ester fluorescent probes,and Transwell assay determined cell biological properties,and 2′,7′-Dichlorofluorescin diacetate(DCFH-DA)fluorescent probes detected oxidative stress levels.Signal transducer and activator of transcription 3(STAT3)/Notch pathway protein levels after GA and/or Interleukin-6(IL-6)intervention were examined through Western blot.Furthermore,a model for subcutaneous graft tumors was established in nude mice.Results:GA exerted suppressive effects on cell proliferation,and caused apoptosis of KYSE30 and TE-1 cells.IL-6 intervention activated the STAT3/Notch pathway and promoted the malignant biological properties of ESCC cells.In contrast,GA attenuated the effects of IL-6,while STAT3 or Notch inhibitor further enhanced the effects of GA,suggesting that GA inhibited the IL-6/STAT3/Notch pathway.Not only that,GA promoted oxidative stress and enhanced cell sensitivity to DDP both in vitro and in vivo.Conclusion:GA suppresses the malignant progression of ESCC and enhances cell sensitivity to DDP by hindering the IL-6/STAT3/Notch pathway.展开更多
To investigate the mechanisms of apigenin(API)and proanthocyanidins(PC)in soothing sensitive skin(SS),a mast cell degranulation model was established by stimulating RBL-2H3 cells with the calcium ionophore A23187.Base...To investigate the mechanisms of apigenin(API)and proanthocyanidins(PC)in soothing sensitive skin(SS),a mast cell degranulation model was established by stimulating RBL-2H3 cells with the calcium ionophore A23187.Based on the combinatorial experiments,it was found that when API and PC were combined at the molar ratios of 4∶1 and 2∶1,they exhibited the antagonistic effects on histamine release(combination index CI>1);when they are combined at the molar ratios of 1∶1,1∶2 or 1∶4,they showed the synergistic effects on histamine release(CI<1).Among them,the combination of API and PC at a molar ratio of 1∶1 showed the better potent synergistic antihistamine release effect(CI=0.70).Histamine is a hallmark of the mast cell degranulation,consequently,the combination of API and PC at a molar ratio of 1∶1 yields the better efficiency in inhibiting the mast cell degranulation with the lowest IC_(50)value.Compared to the utilization of API or PC alone,the IC_(50)value was reduced by 11.150 and 6.503μmol/L,respectively.Compared to the positive control paeonol(PA),the treatment with the combination significantly reduced theβ-hex secretion,decreased the F-actin cytoskeleton rearrangement,and markedly suppressed the release of TNF-α,IL-4,and MCP-1.Further studies on the signaling pathways related to the mast cell degranulation indicated that the combination effectively inhibited the intracellular Ca^(2+)influx and significantly suppressed the phosphorylation of calmodulin-dependent protein kinase(CaMK)and phospholipase C/protein kinase C(PLC/PKC).In summary,the combination of API and PC at a molar ratio of 1∶1 exhibited the better synergistic antagonistic effect on the histamine release,inhibited the mast cell degranulation model activation by reducing Ca^(2+)influx and inhibiting the activation of Ca^(2+)/CaMK and PLC/PKC pathways,stabilized the cell membranes,regulated the inflammatory factor secretion,and exerted an effect in alleviating sensitive skin.展开更多
Objective: We describe patients with MCS, the evolution of the Quick Environmental Exposure and Sensitivity Inventory (QEESI) score with a special focus on people whose fillings were removed. Methods: We have conducte...Objective: We describe patients with MCS, the evolution of the Quick Environmental Exposure and Sensitivity Inventory (QEESI) score with a special focus on people whose fillings were removed. Methods: We have conducted a retrospective longitudinal cohort study in patients diagnosed with MCS and attended in the outpatient Internal Medicine department of the University Hospital of San Juan de Alicante, from January 1, 2008 to January 1, 2021. Sociodemographic, clinical, QEESI and treatment-related variables were collected. We performed descriptive and inferential analyses. Mixed linear models were used to analyze the QEESI. Calculations were carried out with an α error of 5%. Results: Thirty-three patients were included (72.7% women, mean age 56.2). MCS was mainly triggered by mercury (N = 20) and food intolerance (N = 22). The mean interval from symptoms onset was 120 months (SD 81.6). 114 QEESIs were analyzed: 82 (N = 17 without amalgams) and 32 (N = 16 with amalgams). In patients without amalgams, severity scores increased across all subscales except the masking index (vs. with amalgams). Mean scores for the group without amalgams (vs. with amalgams) were: chemical intolerance, 62.8 points (vs. 63.4 and 46.7);other intolerances, 52.7 points (vs. 62.8 and 50.3);symptom severity, 63.2 (vs. 76.7 and 63.3);masking index, 3.9 (vs. 3.2 and 2.8);and life impacts, 63.1 (vs. 58.4 and 49.8). Conclusion: The profile of patient with MCS is a middle-aged woman who is a frequent user of healthcare services, presents a long diagnostic delay and has borne a great personal, work and socioeconomic impact. The QEESI is useful for the clinical follow-up of patients, including the optimal treatment response in the case of amalgams. Clinical Significance: People affected by Multiple Chemical Sensitivity deserve the attention, understanding and help of health professionals and family members, to face an invisible illness for those who do not suffer from it. Support is needed and doctors must raise awareness, and make an effort to understand and address this pathology. We suggest that protocolized amalgam extraction in accredited and prepared centers can reduce symptoms and improve quality of life, generating clinical, personal, family, occupational, social and occupational benefits.展开更多
In modern complex systems,real-time regression prediction plays a vital role in performance evaluation and risk warning.Nevertheless,existing methods still face challenges in maintaining stability and predictive accur...In modern complex systems,real-time regression prediction plays a vital role in performance evaluation and risk warning.Nevertheless,existing methods still face challenges in maintaining stability and predictive accuracy under complex conditions.To address these limitations,this study proposes an online prediction approach that integrates event tracking sensitivity analysis with machine learning.Specifically,a real-time event tracking sensitivity analysis method is employed to capture and quantify the impact of key events on system outputs.On this basis,a mutualinformation–based self-extraction mechanism is introduced to construct prior weights,which are then incorporated into a LightGBM prediction model.Furthermore,iterative optimization of the feature selection threshold is performed to enhance both stability and accuracy.Experiments on composite microsensor data demonstrate that the proposed method achieves robust and efficient real-time prediction,with potential extension to industrial monitoring and control applications.展开更多
Background:Sensitive skin affects a substantial portion of the global population and has significant implications for skin health and well-being.In addition to unpleasant sensory effects,individuals with sensitive ski...Background:Sensitive skin affects a substantial portion of the global population and has significant implications for skin health and well-being.In addition to unpleasant sensory effects,individuals with sensitive skin were likely to be more susceptible to hyperpigmentation.However,the association between sensitive skin and hyperpigmentation,as well as the underlying molecular mechanisms,remain unclear.Objective:This study aims to investigate the correlation and intrinsic mechanisms between sensitive skin and hyperpigmentation through network pharmacology combined with molecular docking.Materials and Methods:The targets associated with sensitive skin and hyperpigmentation were collected from the human gene database,GeneCards.Subsequently,the protein-protein interaction(PPI)network,Kyoto Encyclopedia of Genes and Genomes(KEGG),and Gene Ontology(GO)enrichment analysis were performed to explore the biological connections between sensitive skin and hyperpigmentation.Additionally,the targets of 15 active compounds with reported lightening effects were collected from TCMSP,BATMAN and SymMap databases.Target analysis and molecular docking were performed to identify potential candidates for addressing hyperpigmentation on sensitive skin.The anti-melanogenesis effect of the identified candidate was verified in B16F10 cells.Results:A total of 16971 sensitive skin targets and 11382 hyperpigmentation targets were screened,and 9693 overlapping targets were identified,with a core set comprising 164 targets.The combination of PPI network,KEGG and GO analysis revealed the key role of tyrosinase and immune-mediated inflammation in pigmentation on sensitive skin.Among the 15 active compounds,oxyresveratrol was identified as having a high correlation with the core set targets and predicted strong inhibition of Tyrosine-protein Kinase Kit.The application of oxyresveratrol exhibited a dose-dependent suppression of melanin production in B16F10 cells.Conclusion:This study suggested the crucial roles of immune-mediated inflammation in sensitive skin and hyperpigmentation,as well as highlighted the potential of oxyresveratrol in addressing hyperpigmentation on sensitive skin.These comprehensive findings provide a deeper understanding of the connection mechanism between sensitive skin and hyperpigmentation,offering new insights for the development of targeted treatments and interventions.展开更多
Background:This study evaluates the efficacy of gabexate mesylate thermosensitive in-situ gel(GMTI) in the treatment of beagle grade Ⅲ pancreatic trauma(PT) with the assistance of contrast-enhanced ultrasound(CEUS) a...Background:This study evaluates the efficacy of gabexate mesylate thermosensitive in-situ gel(GMTI) in the treatment of beagle grade Ⅲ pancreatic trauma(PT) with the assistance of contrast-enhanced ultrasound(CEUS) and investigates its mechanism of action.Methods:A grade Ⅲ PT model consisting of 15 beagle dogs with severed main pancreatic ducts was created and treated with cephalic vein injection of gabexate mesylate(GM)(1.54mL/10kg,TID) and peripancreatic injection of GMTI(4.63 mL/10 kg,QD) guided by CEUS within 24h post-surgery.Ascites and serum levels of amylase(AMY),lipase(LPS),C-reactive protein(CRP),interleukin(IL)-6,tumor necrosis factor(TNF)-α,and urinary trypsinogen activating peptide(TAP) were detected by ELISA.Histopathological changes in the canine pancreas were observed by Hematoxylin and Eosin staining.Results:CEUS accurately displayed pancreatic lesions and guided catheterisation.Compared to the control group,the ascites was significantly reduced after treatment(p<0.01).AMY and LPS ascites significantly decreased on post-operative 1st and 2nd day(p<0.01).The levels of AMY,LPS,CRP,IL-6,and TNF-α in serum were decreased(p<0.05 or p <0.01).Urinary TAP was decreased 1 and 2 days after treatment(p<0.05or p<0.01,respectively).In the control group,pancreatic tissue necrosis was evident in the wound area.Normal glandular cell structures and fibrous tissue hyperplasia were observed in the wound area after GMTI treatment.The GMTI group performed better than the GM group in improving pancreatic histology and reducing AMY levels in the early post-operative period.Conclusion:Guided by CEUS,daily peripancreatic injections of GMTI in Beagles effectively inhibit pancreatic enzyme activity and aid in the adjuvant treatment of pancreatic trauma.展开更多
The development of the Internet of Things(IoT)has brought convenience to people’s lives,but it also introduces significant security risks.Due to the limitations of IoT devices themselves and the challenges of re-host...The development of the Internet of Things(IoT)has brought convenience to people’s lives,but it also introduces significant security risks.Due to the limitations of IoT devices themselves and the challenges of re-hosting technology,existing fuzzing for IoT devices is mainly conducted through black-box methods,which lack effective execution feedback and are blind.Meanwhile,the existing static methods mainly rely on taint analysis,which has high overhead and high false alarm rates.We propose a new directed fuzz testing method for detecting bugs in web service programs of IoT devices,which can test IoT devices more quickly and efficiently.Specifically,we identify external input entry points using multiple features.Then we quickly find sensitive targets and paths affected by external input sources based on sensitive data flow analysis of decompiled code,treating them as testing objects.Finally,we performa directed fuzzing test.We use debugging interfaces to collect execution feedback and guide the programto reach sensitive targets based on programpruning techniques.We have implemented a prototype system,AntDFuzz,and evaluated it on firmware fromten devices across five well-known manufacturers.We discovered twelve potential vulnerabilities,seven of which were confirmed and assigned bug id by China National Vulnerability Database(CNVD).The results show that our approach has the ability to find unknown bugs in real devices and is more efficient compared to existing tools.展开更多
In the era of digital intelligence,data is a key element in promoting social and economic development.Educational data,as a vital component of data,not only supports teaching and learning but also contains much sensit...In the era of digital intelligence,data is a key element in promoting social and economic development.Educational data,as a vital component of data,not only supports teaching and learning but also contains much sensitive information.How to effectively categorize and protect sensitive data has become an urgent issue in educational data security.This paper systematically researches and constructs a multi-dimensional classification framework for sensitive educational data,and discusses its security protection strategy from the aspects of identification and desensitization,aiming to provide new ideas for the security management of sensitive educational data and to help the construction of an educational data security ecosystem in the era of digital intelligence.展开更多
Compared with natural enzymes, nanozymes have the advantages of high stability and low cost;however,selectivity and sensitivity are key issues that prevent their further development. In this study, we report a cascade...Compared with natural enzymes, nanozymes have the advantages of high stability and low cost;however,selectivity and sensitivity are key issues that prevent their further development. In this study, we report a cascade nanozymatic system with significantly improved selectivity and sensitivity that combines more substrate-specific reactions and sensitive fiuorescence detection. Taking detection of ascorbic acid(AA)as an example, a cascade catalytic reaction system consisting of oxidase-like N-doped carbon nanocages(NC) and peroxidase-like copper oxide(Cu O) improved the reaction selectivity in transforming the substrate into the target product by more than 1200 times against the interference of uric acid. The cascade catalytic reaction system was also applicable for transfer from open reactors into a spatially confined microfiuidic device, increasing the slope of the calibration curves by approximately 1000-fold with a linear detection range of 2.5 nmol/L to 100 nmol/L and a low limit of detection of 0.77 nmol/L. This work offers a new strategy that achieves significant improvements in selectivity and sensitivity.展开更多
Polar semiconductors,particularly the emerging polar two-dimensional(2D)halide perovskites,have motivated immense interest in diverse photoelectronic devices due to their distinguishing polarizationgenerated photoelec...Polar semiconductors,particularly the emerging polar two-dimensional(2D)halide perovskites,have motivated immense interest in diverse photoelectronic devices due to their distinguishing polarizationgenerated photoelectric effects.However,the constraints on the organic cation's choice are still subject to limitations of polar 2D halide perovskites due to the size of the inorganic pocket between adjacent corner-sharing octahedra.Herein,a mixed spacer cation ordering strategy is employed to assemble a polar 2D halide perovskite NMAMAPb Br_(4)(NMPB,NMA is N-methylbenzene ammonium,MA is methylammonium)with alternating cation in the interlayer space.Driven by the incorporation of a second MA cation,the perovskite layer transformed from a 2D Pb_(7)Br_(24)anionic network with corner-and face-sharing octahedra to a flat 2D PbBr_(4)perovskite networks only with corner-sharing octahedra.In the crystal structure of NMPB,the asymmetric hydrogen-bonding interactions between ordered mixed-spacer cations and 2D perovskite layers give rise to a second harmonic generation response and a large polarization of 1.3μC/cm^(2).More intriguingly,the ordered 2D perovskite networks endow NMPB with excellent self-powered polarization-sensitive detection performance,showing a considerable polarization-related dichroism ratio up to 1.87.The reconstruction of an inorganic framework within a crystal through mixed cation ordering offers a new synthetic tool for templating perovskite lattices with controlled properties,overcoming limitations of conventional cation choice.展开更多
With the appearance of eutherian mammals,3 visual pigments were retained in their retina,mediating light sensitivity.Of them,rhodopsin is expressed in rod photoreceptor celis to conduct dim-light vision,while the othe...With the appearance of eutherian mammals,3 visual pigments were retained in their retina,mediating light sensitivity.Of them,rhodopsin is expressed in rod photoreceptor celis to conduct dim-light vision,while the other 2 visual pigments,middle/long wavelength-sensitive(M/LWS)and short wavelength-sensitive type 1(SWS1)visual pigments,expressed in cones are for color vision(Chi et al.2020).Murid rodents(order Rodentia:family Muridae),originated 17-22 million years ago(Mya)and represent more than 10%of living mammal species(Aghova et al.2018).Within these murid species,their SWS1 pigment retained the ancestral ultraviolet(UV)sensitivity,which is generally associated with a nocturnal lifestyle(Emerling et al.2015).In contrast,the spectral sensitivities of murid M/LWS are more diversifed,with wavelengths of maximum absorption(amax)ranging from 490 to 509 nm(Yokoyama et al.2008;Chi et al.2020).展开更多
This study aims to investigate the antioxidant activity of Tibetan gentian(Gentiana spp.)extract and its essence when compounded with a facial mask matrix.It also evaluates the efficacy of facial masks containing gent...This study aims to investigate the antioxidant activity of Tibetan gentian(Gentiana spp.)extract and its essence when compounded with a facial mask matrix.It also evaluates the efficacy of facial masks containing gentian extract on sensitive facial skin and analyzes the comprehensive performance of the mask.A total of 90 patients with facial sensitive skin,enrolled between October 2022 and December 2024,were randomly assigned to either a control group or an observation group,with 45 patients in each.The control group used standard facial masks,while the observation group used masks containing gentian extract.Both groups underwent a 4-week intervention.The effi cacy,lactic acid stinging test indicators,and skin physiological function parameters were compared between the two groups.Results showed that the overall eff ectiveness rate in the observation group reached 93.26%,signifi cantly higher than 71.20%in the control group(P<0.05).After the intervention,both groups showed notable improvements compared to baseline in lactic acid stinging test scores and physiological skin indicators.Specifi cally,the observation group had signifi cantly lower stinging scores and a longer latency before the onset of stinging compared to the control group.Moreover,the skin pH values were lower,while sebum levels and stratum corneum hydration were higher than those in the control group(P<0.05).No serious adverse events occurred in either group.These fi ndings suggest that facial masks containing gentian extract eff ectively alleviate symptoms of sensitive facial skin,enhance skin barrier function and tolerance,and are safe for use.展开更多
Flexible pressure sensors show great promise for applications in such fields as electronic skin,healthcare,and intelligent robotics.Traditional capacitive pressure sensors,however,face the problem of low sensitivity,w...Flexible pressure sensors show great promise for applications in such fields as electronic skin,healthcare,and intelligent robotics.Traditional capacitive pressure sensors,however,face the problem of low sensitivity,which limits their wider application.In this paper,a flexible capacitive pressure sensor with microstructured ionization layer is fabricated by a sandwich-type process,with a low-cost and simple process of inverted molding with sandpapers being used to form a thermoplastic polyurethane elastomer ionic film with double-sided microstructure as the dielectric layer of the sensor,with silver nanowires as electrodes.The operating mechanism of this iontronic pressure sensor is analyzed using a graphical method,and the sensor is tested on a pressure platform.The test results show that the sensor has ultrahigh pressure sensitivities of 3.744 and 1.689 kPa^(−1) at low(0-20 kPa)and high(20-800 kPa)pressures,respectively,as well as a rapid response time(100 ms),and it exhibits good stability and repeatability.The sensor can be used for sensitive monitoring of activities such as finger bending,and for facial expression(smile,frown)recognition,as well as speech recognition.展开更多
Big data has ushered in an era of unprecedented access to vast amounts of new,unstructured data,particularly in the realm of sensitive information.It presents unique opportunities for enhancing risk alerting systems,b...Big data has ushered in an era of unprecedented access to vast amounts of new,unstructured data,particularly in the realm of sensitive information.It presents unique opportunities for enhancing risk alerting systems,but also poses challenges in terms of extraction and analysis due to its diverse file formats.This paper proposes the utilization of a DAE-based(Deep Auto-encoders)model for projecting risk associated with financial data.The research delves into the development of an indicator assessing the degree to which organizations successfully avoid displaying bias in handling financial information.Simulation results demonstrate the superior performance of the DAE algorithm,showcasing fewer false positives,improved overall detection rates,and a noteworthy 9%reduction in failure jitter.The optimized DAE algorithm achieves an accuracy of 99%,surpassing existing methods,thereby presenting a robust solution for sensitive data risk projection.展开更多
BACKGROUND Chemotherapy for triple-negative breast cancer(TNBC)is often limited in efficacy due to drug resistance.The NOTCH1 pathway significantly contributes to the advancement of tumors,but its mechanism of action ...BACKGROUND Chemotherapy for triple-negative breast cancer(TNBC)is often limited in efficacy due to drug resistance.The NOTCH1 pathway significantly contributes to the advancement of tumors,but its mechanism of action in sensitizing TNBC to chemotherapy and its association with the downstream molecule,NT5E,is unclear.AIM To explore the molecular mechanisms by which NOTCH1 regulates cisplatin sensitivity in TNBC cells,and to validate its synergistic effect with NT5E.METHODS Expression of NOTCH1 in MDA-MB-231 cells was silenced using RNA interference,and the changes in cell proliferation,migration and cisplatin sensitivity were measured in combination with cell function experiments.The regulatory relationship between NOTCH1 and NT5E was analyzed using qPCR and Western blotting,and the silencing effect of NOTCH1 was verified using NT5E overexpression experiments.RESULTS Knockdown of NOTCH1 hindered the growth and motility of TNBC cells and lowered cisplatin’s half-maximal inhibitory concentration.Expression of NOTCH1 and NT5E was positively correlated,and NOTCH1 silencing led to a decrease in the expression of NT5E.Elevated NT5E expression attenuated the suppressive effects of NOTCH1 knockdown on both cell proliferation and cisplatin response.CONCLUSION NOTCH1 enhances TNBC cisplatin chemosensitivity by regulating NT5E expression.This study provides a new target and experimental basis for the development of combination therapy strategies for TNBC.展开更多
The precipitation of secondary Laves phases and its effect on notch sensitivity are systematically studied in Thermo-Span alloy. The results show that the precipitation peak temperature of secondary Laves phases is 9...The precipitation of secondary Laves phases and its effect on notch sensitivity are systematically studied in Thermo-Span alloy. The results show that the precipitation peak temperature of secondary Laves phases is 925 ℃. Below 925 ℃, the volume fraction of secondary Laves phases increases with the rise of the temperature, and its morphology changes from granular to thin-film;above 925 ℃, the volume fraction of secondary Laves phases shows an opposite trend to temperature, and its morphology changes from thin-film to granular. A detailed explanation through linear density (ρ) is provided that the influence of secondary Laves phases at the grain boundaries (GBs) on notch sensitivity depends on the coupling competition effect of their size, quantity, and morphology. Notably, the granular Laves phases are more beneficial to improving the notch sensitivity of the alloy compared with thin-film Laves phases. Granular secondary Laves phases can promote the formation of γ′ phases depletion zone to improve the ability of GBs to accommodate high strain localization, and effectively inhibit the crack initiation and propagation.展开更多
Transcatheter arterial embolization(TAE)is the mainstay for treating advanced hepatocellular carcinoma(HCC),and the performance of the embolization material is crucial in TAE.With the development of medical imaging an...Transcatheter arterial embolization(TAE)is the mainstay for treating advanced hepatocellular carcinoma(HCC),and the performance of the embolization material is crucial in TAE.With the development of medical imaging and the birth of“X-ray-free”technologies,we designed a new dual-mode imaging material of dimethoxy tetraphenyl ethylene(DMTPE)via emulsification by mixing poly(N-isopropylacrylamide-co-acrylic acid)(PNA)with lipiodol and fluorocarbons,which was evaluated for temperature sensitivity,stability,and dual-mode visualization in vitro.Additionally,blood vessel casting embolization and renal artery imaging were assessed in healthy rabbits.In a rabbit model with a VX2 tumor,the effectiveness of TAE for treating HCC was examined,with an emphasis on evaluating long-term outcomes of embolization and its effects on tumor growth,necrosis,and proliferation through imaging techniques.In vitro experiments confirmed that the temperature-sensitive dual-oil-phase Pickering emulsion had good flow,stable contrast,and embolism when the oil-to-oil ratio and water-to-oil ratio were both 7:3(v/v)and stabilized with 8%PNA.Similarly,in vivo,arterial embolization confirmed the excellent properties of DMTPE prepared at the abovementioned ratios.It was observed that DMTPE not only has an antitumor effect but can also achieve dual imaging using X-rays and ultrasound,making it a promising excellent vascular embolization material for TAE in tumor treatment.展开更多
BACKGROUND Neutrophil extracellular traps(NETs)are associated with an immunosuppressive tumor microenvironment and may influence the efficacy of immune-based therapies.However,their role in neoadjuvant chemotherapy co...BACKGROUND Neutrophil extracellular traps(NETs)are associated with an immunosuppressive tumor microenvironment and may influence the efficacy of immune-based therapies.However,their role in neoadjuvant chemotherapy combined with immunotherapy(NACI)for locally advanced gastric cancer(LAGC)remains unclear.AIM To investigate the prognostic and predictive value of NET density in LAGC patients undergoing NACI.METHODS We enrolled 31 LAGC patients treated with NACI.NET density was assessed through dual immunofluorescence staining of citrullinated histone H3 and myeloperoxidase in pretreatment biopsy and post-treatment surgical specimens.Patients were stratified into high and low pre-NACI NET groups based on median NET density.Pathological complete response(pCR)and overall response rates were evaluated in relation to NET density.Logistic regression analyses were performed to identify independent predictors of treatment outcomes.Dynamic changes in NET density during NACI were also analyzed.RESULTS Patients with low pre-NACI NET density demonstrated significantly higher rates of pCR(40%vs 6%,P=0.037)and overall response(53%vs 12%,P=0.023)compared to those with high NET density.Low pre-NACI NET density and higher programmed death protein ligand 1 expression were identified as independent protective factors for achieving pCR and better response rates.NACI increased NET density;however,this increase was primarily observed in non-pCR and nonresponder groups.Patients in the pCR and responder groups showed stable NET density before and after treatment.Higher post-NACI NET density was associated with poorer respond to NACI.High post-NACI NET density was associated with increased infiltration of immunosuppressive FOXP3+T regulatory cells(P=0.025)and CD68+macrophages(P=0.038).CONCLUSION Pre-NACI NET density serves as a prognostic and predictive biomarker for NACI efficacy in LAGC patients.Low pretreatment NET density is associated with favorable outcomes,while increased post-treatment NET density correlates with poorer response.Targeting NET formation may represent a novel therapeutic strategy to enhance NACI efficacy in LAGC.展开更多
文摘Carbon nanotube-reinforced cement composites have gained significant attention due to their enhanced mechanical properties,particularly in compressive and flexural strength.Despite extensive research,the influence of various parameters on these properties remains inadequately understood,primarily due to the complex interactions within the composites.This study addresses this gap by employingmachine learning techniques to conduct a sensitivity analysis on the compressive and flexural strength of carbon nanotube-reinforced cement composites.It systematically evaluates nine data-preprocessing techniques and benchmarks eleven machine-learning algorithms to reveal tradeoffs between predictive accuracy and computational complexity,which has not previously been explored in carbon nanotube-reinforced cement composite research.In this regard,four main factors are considered in the sensitivity analysis,which are the machine learning model type,the data pre-processing technique,and the effect of the concrete constituent materials on the compressive and flexural strength both globally through feature importance assessment and locally through partial dependence analysis.Accordingly,this research optimizes ninety-nine models representing combinations of eleven machine learning algorithms and nine data preprocessing techniques to accurately predict the mechanical properties of carbon nanotube-reinforced cement composites.Moreover,the study aims to unravel the relationships between different parameters and their impact on the composite’s strength by utilizing feature importance and partial dependence analyses.This research is crucial as it provides a comprehensive understanding of the factors influencing the performance of carbon nanotube-reinforced cement composites,which is vital for their efficient design and application in construction.The use of machine learning in this context not only enhances predictive accuracy but also offers insights that are often challenging to obtain through traditional experimental methods.The findings contribute to the field by highlighting the potential of advanced data-driven approaches in optimizing and understanding advanced composite materials,paving the way for more durable and resilient construction materials.
基金Sponsored by Jilin Provincial Department of Education Scientific Research Project(Grant Nos.JJKH20190875KJ,JJKH20230348KJ).
文摘This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curing duration on the unconfined compressive strength,initial resistivity and pressure sensitivity of the improved soil was systematically analysed.The results showed that the unconfined compressive strength varied non⁃monotonically with increasing CFP dosage,reaching a peak at a dosage of 1.6%.Furthermore,the initial resistivity showed slight variations under different moisture conditions but eventually converged towards the conductive percolation threshold at a dosage of 2.4%.It is worth noting that CFP reinforced lime⁃improved silty sand(CRLS)exhibit a clear dynamic synchronization of strain with stress and resistivity rate of variation.The pressure sensitivity was optimized with CFP dosages ranging from 1.6%to 2.0%.Both insufficient and excessive dosages had a negative impact on pressure sensitivity.It is important to consider the weakening effect of high moisture content on the pressure sensitivity of the specimens in practical applications.
基金Mechanistic Investigation into the Extraction,Purification,and Anti-Esophageal Cancer Effects of Gallic Acid Derived from Rhodiola crenulata(YLUKLM2023001).
文摘Background:Gallic acid(GA),a plant-derived polyphenol,possesses diverse biological functions such as reducing inflammation and against tumors.Currently,the influence of GA on the resistance of esophageal squamous cell carcinoma(ESCC)cells to cisplatin(DDP)is not well understood.Methods:Cell counting kit-8 assay examined how GA affected KYSE30 and TE-1 cell viability.5-Ethynyl-2′-deoxyuridine and TdT-mediated dUTP Nick-End labeling staining detected cell proliferation and apoptosis.Clone formation assay,flow cytometry,Carboxyfluorescein diacetate succinimidyl ester fluorescent probes,and Transwell assay determined cell biological properties,and 2′,7′-Dichlorofluorescin diacetate(DCFH-DA)fluorescent probes detected oxidative stress levels.Signal transducer and activator of transcription 3(STAT3)/Notch pathway protein levels after GA and/or Interleukin-6(IL-6)intervention were examined through Western blot.Furthermore,a model for subcutaneous graft tumors was established in nude mice.Results:GA exerted suppressive effects on cell proliferation,and caused apoptosis of KYSE30 and TE-1 cells.IL-6 intervention activated the STAT3/Notch pathway and promoted the malignant biological properties of ESCC cells.In contrast,GA attenuated the effects of IL-6,while STAT3 or Notch inhibitor further enhanced the effects of GA,suggesting that GA inhibited the IL-6/STAT3/Notch pathway.Not only that,GA promoted oxidative stress and enhanced cell sensitivity to DDP both in vitro and in vivo.Conclusion:GA suppresses the malignant progression of ESCC and enhances cell sensitivity to DDP by hindering the IL-6/STAT3/Notch pathway.
文摘To investigate the mechanisms of apigenin(API)and proanthocyanidins(PC)in soothing sensitive skin(SS),a mast cell degranulation model was established by stimulating RBL-2H3 cells with the calcium ionophore A23187.Based on the combinatorial experiments,it was found that when API and PC were combined at the molar ratios of 4∶1 and 2∶1,they exhibited the antagonistic effects on histamine release(combination index CI>1);when they are combined at the molar ratios of 1∶1,1∶2 or 1∶4,they showed the synergistic effects on histamine release(CI<1).Among them,the combination of API and PC at a molar ratio of 1∶1 showed the better potent synergistic antihistamine release effect(CI=0.70).Histamine is a hallmark of the mast cell degranulation,consequently,the combination of API and PC at a molar ratio of 1∶1 yields the better efficiency in inhibiting the mast cell degranulation with the lowest IC_(50)value.Compared to the utilization of API or PC alone,the IC_(50)value was reduced by 11.150 and 6.503μmol/L,respectively.Compared to the positive control paeonol(PA),the treatment with the combination significantly reduced theβ-hex secretion,decreased the F-actin cytoskeleton rearrangement,and markedly suppressed the release of TNF-α,IL-4,and MCP-1.Further studies on the signaling pathways related to the mast cell degranulation indicated that the combination effectively inhibited the intracellular Ca^(2+)influx and significantly suppressed the phosphorylation of calmodulin-dependent protein kinase(CaMK)and phospholipase C/protein kinase C(PLC/PKC).In summary,the combination of API and PC at a molar ratio of 1∶1 exhibited the better synergistic antagonistic effect on the histamine release,inhibited the mast cell degranulation model activation by reducing Ca^(2+)influx and inhibiting the activation of Ca^(2+)/CaMK and PLC/PKC pathways,stabilized the cell membranes,regulated the inflammatory factor secretion,and exerted an effect in alleviating sensitive skin.
文摘Objective: We describe patients with MCS, the evolution of the Quick Environmental Exposure and Sensitivity Inventory (QEESI) score with a special focus on people whose fillings were removed. Methods: We have conducted a retrospective longitudinal cohort study in patients diagnosed with MCS and attended in the outpatient Internal Medicine department of the University Hospital of San Juan de Alicante, from January 1, 2008 to January 1, 2021. Sociodemographic, clinical, QEESI and treatment-related variables were collected. We performed descriptive and inferential analyses. Mixed linear models were used to analyze the QEESI. Calculations were carried out with an α error of 5%. Results: Thirty-three patients were included (72.7% women, mean age 56.2). MCS was mainly triggered by mercury (N = 20) and food intolerance (N = 22). The mean interval from symptoms onset was 120 months (SD 81.6). 114 QEESIs were analyzed: 82 (N = 17 without amalgams) and 32 (N = 16 with amalgams). In patients without amalgams, severity scores increased across all subscales except the masking index (vs. with amalgams). Mean scores for the group without amalgams (vs. with amalgams) were: chemical intolerance, 62.8 points (vs. 63.4 and 46.7);other intolerances, 52.7 points (vs. 62.8 and 50.3);symptom severity, 63.2 (vs. 76.7 and 63.3);masking index, 3.9 (vs. 3.2 and 2.8);and life impacts, 63.1 (vs. 58.4 and 49.8). Conclusion: The profile of patient with MCS is a middle-aged woman who is a frequent user of healthcare services, presents a long diagnostic delay and has borne a great personal, work and socioeconomic impact. The QEESI is useful for the clinical follow-up of patients, including the optimal treatment response in the case of amalgams. Clinical Significance: People affected by Multiple Chemical Sensitivity deserve the attention, understanding and help of health professionals and family members, to face an invisible illness for those who do not suffer from it. Support is needed and doctors must raise awareness, and make an effort to understand and address this pathology. We suggest that protocolized amalgam extraction in accredited and prepared centers can reduce symptoms and improve quality of life, generating clinical, personal, family, occupational, social and occupational benefits.
基金financial support from the National Natural Science Foundation of China(Grants No.U2330206,No.U2230206,and No.62173068)the Natural Science Foundation of Guangxi Province(Grant No.AB24010157)+1 种基金the Sichuan Forestry and Grassland Bureau(Grant Nos.G202206012 and G202206012-2)Sichuan Science and Technology Program(Grant Nos.2024NSFSC1483,2024ZYD0156,2023NSFC1962,and DQ202412).
文摘In modern complex systems,real-time regression prediction plays a vital role in performance evaluation and risk warning.Nevertheless,existing methods still face challenges in maintaining stability and predictive accuracy under complex conditions.To address these limitations,this study proposes an online prediction approach that integrates event tracking sensitivity analysis with machine learning.Specifically,a real-time event tracking sensitivity analysis method is employed to capture and quantify the impact of key events on system outputs.On this basis,a mutualinformation–based self-extraction mechanism is introduced to construct prior weights,which are then incorporated into a LightGBM prediction model.Furthermore,iterative optimization of the feature selection threshold is performed to enhance both stability and accuracy.Experiments on composite microsensor data demonstrate that the proposed method achieves robust and efficient real-time prediction,with potential extension to industrial monitoring and control applications.
文摘Background:Sensitive skin affects a substantial portion of the global population and has significant implications for skin health and well-being.In addition to unpleasant sensory effects,individuals with sensitive skin were likely to be more susceptible to hyperpigmentation.However,the association between sensitive skin and hyperpigmentation,as well as the underlying molecular mechanisms,remain unclear.Objective:This study aims to investigate the correlation and intrinsic mechanisms between sensitive skin and hyperpigmentation through network pharmacology combined with molecular docking.Materials and Methods:The targets associated with sensitive skin and hyperpigmentation were collected from the human gene database,GeneCards.Subsequently,the protein-protein interaction(PPI)network,Kyoto Encyclopedia of Genes and Genomes(KEGG),and Gene Ontology(GO)enrichment analysis were performed to explore the biological connections between sensitive skin and hyperpigmentation.Additionally,the targets of 15 active compounds with reported lightening effects were collected from TCMSP,BATMAN and SymMap databases.Target analysis and molecular docking were performed to identify potential candidates for addressing hyperpigmentation on sensitive skin.The anti-melanogenesis effect of the identified candidate was verified in B16F10 cells.Results:A total of 16971 sensitive skin targets and 11382 hyperpigmentation targets were screened,and 9693 overlapping targets were identified,with a core set comprising 164 targets.The combination of PPI network,KEGG and GO analysis revealed the key role of tyrosinase and immune-mediated inflammation in pigmentation on sensitive skin.Among the 15 active compounds,oxyresveratrol was identified as having a high correlation with the core set targets and predicted strong inhibition of Tyrosine-protein Kinase Kit.The application of oxyresveratrol exhibited a dose-dependent suppression of melanin production in B16F10 cells.Conclusion:This study suggested the crucial roles of immune-mediated inflammation in sensitive skin and hyperpigmentation,as well as highlighted the potential of oxyresveratrol in addressing hyperpigmentation on sensitive skin.These comprehensive findings provide a deeper understanding of the connection mechanism between sensitive skin and hyperpigmentation,offering new insights for the development of targeted treatments and interventions.
文摘Background:This study evaluates the efficacy of gabexate mesylate thermosensitive in-situ gel(GMTI) in the treatment of beagle grade Ⅲ pancreatic trauma(PT) with the assistance of contrast-enhanced ultrasound(CEUS) and investigates its mechanism of action.Methods:A grade Ⅲ PT model consisting of 15 beagle dogs with severed main pancreatic ducts was created and treated with cephalic vein injection of gabexate mesylate(GM)(1.54mL/10kg,TID) and peripancreatic injection of GMTI(4.63 mL/10 kg,QD) guided by CEUS within 24h post-surgery.Ascites and serum levels of amylase(AMY),lipase(LPS),C-reactive protein(CRP),interleukin(IL)-6,tumor necrosis factor(TNF)-α,and urinary trypsinogen activating peptide(TAP) were detected by ELISA.Histopathological changes in the canine pancreas were observed by Hematoxylin and Eosin staining.Results:CEUS accurately displayed pancreatic lesions and guided catheterisation.Compared to the control group,the ascites was significantly reduced after treatment(p<0.01).AMY and LPS ascites significantly decreased on post-operative 1st and 2nd day(p<0.01).The levels of AMY,LPS,CRP,IL-6,and TNF-α in serum were decreased(p<0.05 or p <0.01).Urinary TAP was decreased 1 and 2 days after treatment(p<0.05or p<0.01,respectively).In the control group,pancreatic tissue necrosis was evident in the wound area.Normal glandular cell structures and fibrous tissue hyperplasia were observed in the wound area after GMTI treatment.The GMTI group performed better than the GM group in improving pancreatic histology and reducing AMY levels in the early post-operative period.Conclusion:Guided by CEUS,daily peripancreatic injections of GMTI in Beagles effectively inhibit pancreatic enzyme activity and aid in the adjuvant treatment of pancreatic trauma.
文摘The development of the Internet of Things(IoT)has brought convenience to people’s lives,but it also introduces significant security risks.Due to the limitations of IoT devices themselves and the challenges of re-hosting technology,existing fuzzing for IoT devices is mainly conducted through black-box methods,which lack effective execution feedback and are blind.Meanwhile,the existing static methods mainly rely on taint analysis,which has high overhead and high false alarm rates.We propose a new directed fuzz testing method for detecting bugs in web service programs of IoT devices,which can test IoT devices more quickly and efficiently.Specifically,we identify external input entry points using multiple features.Then we quickly find sensitive targets and paths affected by external input sources based on sensitive data flow analysis of decompiled code,treating them as testing objects.Finally,we performa directed fuzzing test.We use debugging interfaces to collect execution feedback and guide the programto reach sensitive targets based on programpruning techniques.We have implemented a prototype system,AntDFuzz,and evaluated it on firmware fromten devices across five well-known manufacturers.We discovered twelve potential vulnerabilities,seven of which were confirmed and assigned bug id by China National Vulnerability Database(CNVD).The results show that our approach has the ability to find unknown bugs in real devices and is more efficient compared to existing tools.
基金Education Science planning project of Jiangsu Province in 2024(Grant No:B-b/2024/01/152)2025 Jiangsu Normal University Graduate Research and Innovation Program school-level project“Research on the Construction and Desensitization Strategies of Education Sensitive Data Classification from the Perspective of Educational Ecology”。
文摘In the era of digital intelligence,data is a key element in promoting social and economic development.Educational data,as a vital component of data,not only supports teaching and learning but also contains much sensitive information.How to effectively categorize and protect sensitive data has become an urgent issue in educational data security.This paper systematically researches and constructs a multi-dimensional classification framework for sensitive educational data,and discusses its security protection strategy from the aspects of identification and desensitization,aiming to provide new ideas for the security management of sensitive educational data and to help the construction of an educational data security ecosystem in the era of digital intelligence.
基金supported by the National Natural Science Foundation of China (Nos. 22174014 and 22074015)。
文摘Compared with natural enzymes, nanozymes have the advantages of high stability and low cost;however,selectivity and sensitivity are key issues that prevent their further development. In this study, we report a cascade nanozymatic system with significantly improved selectivity and sensitivity that combines more substrate-specific reactions and sensitive fiuorescence detection. Taking detection of ascorbic acid(AA)as an example, a cascade catalytic reaction system consisting of oxidase-like N-doped carbon nanocages(NC) and peroxidase-like copper oxide(Cu O) improved the reaction selectivity in transforming the substrate into the target product by more than 1200 times against the interference of uric acid. The cascade catalytic reaction system was also applicable for transfer from open reactors into a spatially confined microfiuidic device, increasing the slope of the calibration curves by approximately 1000-fold with a linear detection range of 2.5 nmol/L to 100 nmol/L and a low limit of detection of 0.77 nmol/L. This work offers a new strategy that achieves significant improvements in selectivity and sensitivity.
基金supported by the National Natural Science Foundation of China(Nos.22193042,22125110,22075285,52473283,21921001,U21A2069)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.ZDBS-LY-SLH024)the Youth Innovation Promotion of Chinese Academy of Sciences(No.2020307)。
文摘Polar semiconductors,particularly the emerging polar two-dimensional(2D)halide perovskites,have motivated immense interest in diverse photoelectronic devices due to their distinguishing polarizationgenerated photoelectric effects.However,the constraints on the organic cation's choice are still subject to limitations of polar 2D halide perovskites due to the size of the inorganic pocket between adjacent corner-sharing octahedra.Herein,a mixed spacer cation ordering strategy is employed to assemble a polar 2D halide perovskite NMAMAPb Br_(4)(NMPB,NMA is N-methylbenzene ammonium,MA is methylammonium)with alternating cation in the interlayer space.Driven by the incorporation of a second MA cation,the perovskite layer transformed from a 2D Pb_(7)Br_(24)anionic network with corner-and face-sharing octahedra to a flat 2D PbBr_(4)perovskite networks only with corner-sharing octahedra.In the crystal structure of NMPB,the asymmetric hydrogen-bonding interactions between ordered mixed-spacer cations and 2D perovskite layers give rise to a second harmonic generation response and a large polarization of 1.3μC/cm^(2).More intriguingly,the ordered 2D perovskite networks endow NMPB with excellent self-powered polarization-sensitive detection performance,showing a considerable polarization-related dichroism ratio up to 1.87.The reconstruction of an inorganic framework within a crystal through mixed cation ordering offers a new synthetic tool for templating perovskite lattices with controlled properties,overcoming limitations of conventional cation choice.
基金supported by the Natural Science Basic Research Program of Shaanxi(2022JQ-169)the China Postdoctoral Science Foundation(2021M702063)to S.S.,the National Natural Science Foundation of China(32270462)the Fundamental Research Funds for the Central Universities(GK202401001)to Y.L.
文摘With the appearance of eutherian mammals,3 visual pigments were retained in their retina,mediating light sensitivity.Of them,rhodopsin is expressed in rod photoreceptor celis to conduct dim-light vision,while the other 2 visual pigments,middle/long wavelength-sensitive(M/LWS)and short wavelength-sensitive type 1(SWS1)visual pigments,expressed in cones are for color vision(Chi et al.2020).Murid rodents(order Rodentia:family Muridae),originated 17-22 million years ago(Mya)and represent more than 10%of living mammal species(Aghova et al.2018).Within these murid species,their SWS1 pigment retained the ancestral ultraviolet(UV)sensitivity,which is generally associated with a nocturnal lifestyle(Emerling et al.2015).In contrast,the spectral sensitivities of murid M/LWS are more diversifed,with wavelengths of maximum absorption(amax)ranging from 490 to 509 nm(Yokoyama et al.2008;Chi et al.2020).
文摘This study aims to investigate the antioxidant activity of Tibetan gentian(Gentiana spp.)extract and its essence when compounded with a facial mask matrix.It also evaluates the efficacy of facial masks containing gentian extract on sensitive facial skin and analyzes the comprehensive performance of the mask.A total of 90 patients with facial sensitive skin,enrolled between October 2022 and December 2024,were randomly assigned to either a control group or an observation group,with 45 patients in each.The control group used standard facial masks,while the observation group used masks containing gentian extract.Both groups underwent a 4-week intervention.The effi cacy,lactic acid stinging test indicators,and skin physiological function parameters were compared between the two groups.Results showed that the overall eff ectiveness rate in the observation group reached 93.26%,signifi cantly higher than 71.20%in the control group(P<0.05).After the intervention,both groups showed notable improvements compared to baseline in lactic acid stinging test scores and physiological skin indicators.Specifi cally,the observation group had signifi cantly lower stinging scores and a longer latency before the onset of stinging compared to the control group.Moreover,the skin pH values were lower,while sebum levels and stratum corneum hydration were higher than those in the control group(P<0.05).No serious adverse events occurred in either group.These fi ndings suggest that facial masks containing gentian extract eff ectively alleviate symptoms of sensitive facial skin,enhance skin barrier function and tolerance,and are safe for use.
基金supported by the Youth Project of the National Natural Science Foundation of China(Grant No.52105594)the Youth Project of the Applied Basic Research Program of Shanxi Province(Grant No.20210302124274)+4 种基金the Key Research and Development Program of Shanxi Province(Grant No.202102030201005)the Natural Youth Science Foundation of Shanxi Province(Grant Nos.202103021223005 and 202203021212015)the Fund for Shanxi 1331 Project,the Science and Technology Innovation Plan for Colleges and Universities in Shanxi Province(Grant No.2022L575)the Science and Technology Innovation Project in Higher Schools in Shanxi(Grant No.J2020383)Teaching Reform and Innovation Project of the Education Department of Shanxi Province(Grant No.J20221195).
文摘Flexible pressure sensors show great promise for applications in such fields as electronic skin,healthcare,and intelligent robotics.Traditional capacitive pressure sensors,however,face the problem of low sensitivity,which limits their wider application.In this paper,a flexible capacitive pressure sensor with microstructured ionization layer is fabricated by a sandwich-type process,with a low-cost and simple process of inverted molding with sandpapers being used to form a thermoplastic polyurethane elastomer ionic film with double-sided microstructure as the dielectric layer of the sensor,with silver nanowires as electrodes.The operating mechanism of this iontronic pressure sensor is analyzed using a graphical method,and the sensor is tested on a pressure platform.The test results show that the sensor has ultrahigh pressure sensitivities of 3.744 and 1.689 kPa^(−1) at low(0-20 kPa)and high(20-800 kPa)pressures,respectively,as well as a rapid response time(100 ms),and it exhibits good stability and repeatability.The sensor can be used for sensitive monitoring of activities such as finger bending,and for facial expression(smile,frown)recognition,as well as speech recognition.
文摘Big data has ushered in an era of unprecedented access to vast amounts of new,unstructured data,particularly in the realm of sensitive information.It presents unique opportunities for enhancing risk alerting systems,but also poses challenges in terms of extraction and analysis due to its diverse file formats.This paper proposes the utilization of a DAE-based(Deep Auto-encoders)model for projecting risk associated with financial data.The research delves into the development of an indicator assessing the degree to which organizations successfully avoid displaying bias in handling financial information.Simulation results demonstrate the superior performance of the DAE algorithm,showcasing fewer false positives,improved overall detection rates,and a noteworthy 9%reduction in failure jitter.The optimized DAE algorithm achieves an accuracy of 99%,surpassing existing methods,thereby presenting a robust solution for sensitive data risk projection.
基金Supported by National Natural Science Foundation of China,No.82273457the Natural Science Foundation of Guangdong Province,No.2021A1515012180 and No.2023A1515012762+1 种基金Science and Technology Special Project of Guangdong Province,No.210715216902829 and No.200628175260810‘Dengfeng Project’for the Construction of High-Level Hospitals in Guangdong Province—First Affiliated Hospital of Shantou University College Supporting Funding,No.202003-10.
文摘BACKGROUND Chemotherapy for triple-negative breast cancer(TNBC)is often limited in efficacy due to drug resistance.The NOTCH1 pathway significantly contributes to the advancement of tumors,but its mechanism of action in sensitizing TNBC to chemotherapy and its association with the downstream molecule,NT5E,is unclear.AIM To explore the molecular mechanisms by which NOTCH1 regulates cisplatin sensitivity in TNBC cells,and to validate its synergistic effect with NT5E.METHODS Expression of NOTCH1 in MDA-MB-231 cells was silenced using RNA interference,and the changes in cell proliferation,migration and cisplatin sensitivity were measured in combination with cell function experiments.The regulatory relationship between NOTCH1 and NT5E was analyzed using qPCR and Western blotting,and the silencing effect of NOTCH1 was verified using NT5E overexpression experiments.RESULTS Knockdown of NOTCH1 hindered the growth and motility of TNBC cells and lowered cisplatin’s half-maximal inhibitory concentration.Expression of NOTCH1 and NT5E was positively correlated,and NOTCH1 silencing led to a decrease in the expression of NT5E.Elevated NT5E expression attenuated the suppressive effects of NOTCH1 knockdown on both cell proliferation and cisplatin response.CONCLUSION NOTCH1 enhances TNBC cisplatin chemosensitivity by regulating NT5E expression.This study provides a new target and experimental basis for the development of combination therapy strategies for TNBC.
文摘The precipitation of secondary Laves phases and its effect on notch sensitivity are systematically studied in Thermo-Span alloy. The results show that the precipitation peak temperature of secondary Laves phases is 925 ℃. Below 925 ℃, the volume fraction of secondary Laves phases increases with the rise of the temperature, and its morphology changes from granular to thin-film;above 925 ℃, the volume fraction of secondary Laves phases shows an opposite trend to temperature, and its morphology changes from thin-film to granular. A detailed explanation through linear density (ρ) is provided that the influence of secondary Laves phases at the grain boundaries (GBs) on notch sensitivity depends on the coupling competition effect of their size, quantity, and morphology. Notably, the granular Laves phases are more beneficial to improving the notch sensitivity of the alloy compared with thin-film Laves phases. Granular secondary Laves phases can promote the formation of γ′ phases depletion zone to improve the ability of GBs to accommodate high strain localization, and effectively inhibit the crack initiation and propagation.
基金supported by the Hubei Province Nature Science Foundation of China(Grant No.:2023AFB1077)the National Natural Science Foundation of China(Grant No.:82003308)+2 种基金the Doctoral Start-up Fund Project of Hubei University of Science and Technology,China(Grant No.:BK202118)the Innovation team and Medical research program of Hubei University of Science and Technology,China(Grant Nos.:2023T10 and 2022YKY05)the Hubei Province Key R&D Plan Big Health Local Special Project,China(Grant No.:2022BCE042).
文摘Transcatheter arterial embolization(TAE)is the mainstay for treating advanced hepatocellular carcinoma(HCC),and the performance of the embolization material is crucial in TAE.With the development of medical imaging and the birth of“X-ray-free”technologies,we designed a new dual-mode imaging material of dimethoxy tetraphenyl ethylene(DMTPE)via emulsification by mixing poly(N-isopropylacrylamide-co-acrylic acid)(PNA)with lipiodol and fluorocarbons,which was evaluated for temperature sensitivity,stability,and dual-mode visualization in vitro.Additionally,blood vessel casting embolization and renal artery imaging were assessed in healthy rabbits.In a rabbit model with a VX2 tumor,the effectiveness of TAE for treating HCC was examined,with an emphasis on evaluating long-term outcomes of embolization and its effects on tumor growth,necrosis,and proliferation through imaging techniques.In vitro experiments confirmed that the temperature-sensitive dual-oil-phase Pickering emulsion had good flow,stable contrast,and embolism when the oil-to-oil ratio and water-to-oil ratio were both 7:3(v/v)and stabilized with 8%PNA.Similarly,in vivo,arterial embolization confirmed the excellent properties of DMTPE prepared at the abovementioned ratios.It was observed that DMTPE not only has an antitumor effect but can also achieve dual imaging using X-rays and ultrasound,making it a promising excellent vascular embolization material for TAE in tumor treatment.
文摘BACKGROUND Neutrophil extracellular traps(NETs)are associated with an immunosuppressive tumor microenvironment and may influence the efficacy of immune-based therapies.However,their role in neoadjuvant chemotherapy combined with immunotherapy(NACI)for locally advanced gastric cancer(LAGC)remains unclear.AIM To investigate the prognostic and predictive value of NET density in LAGC patients undergoing NACI.METHODS We enrolled 31 LAGC patients treated with NACI.NET density was assessed through dual immunofluorescence staining of citrullinated histone H3 and myeloperoxidase in pretreatment biopsy and post-treatment surgical specimens.Patients were stratified into high and low pre-NACI NET groups based on median NET density.Pathological complete response(pCR)and overall response rates were evaluated in relation to NET density.Logistic regression analyses were performed to identify independent predictors of treatment outcomes.Dynamic changes in NET density during NACI were also analyzed.RESULTS Patients with low pre-NACI NET density demonstrated significantly higher rates of pCR(40%vs 6%,P=0.037)and overall response(53%vs 12%,P=0.023)compared to those with high NET density.Low pre-NACI NET density and higher programmed death protein ligand 1 expression were identified as independent protective factors for achieving pCR and better response rates.NACI increased NET density;however,this increase was primarily observed in non-pCR and nonresponder groups.Patients in the pCR and responder groups showed stable NET density before and after treatment.Higher post-NACI NET density was associated with poorer respond to NACI.High post-NACI NET density was associated with increased infiltration of immunosuppressive FOXP3+T regulatory cells(P=0.025)and CD68+macrophages(P=0.038).CONCLUSION Pre-NACI NET density serves as a prognostic and predictive biomarker for NACI efficacy in LAGC patients.Low pretreatment NET density is associated with favorable outcomes,while increased post-treatment NET density correlates with poorer response.Targeting NET formation may represent a novel therapeutic strategy to enhance NACI efficacy in LAGC.