期刊文献+
共找到5,285篇文章
< 1 2 250 >
每页显示 20 50 100
IoT Empowered Early Warning of Transmission Line Galloping Based on Integrated Optical Fiber Sensing and Weather Forecast Time Series Data 被引量:1
1
作者 Zhe Li Yun Liang +1 位作者 Jinyu Wang Yang Gao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1171-1192,共22页
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran... Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios. 展开更多
关键词 Optical fiber sensing multi-source data fusion early warning of galloping time series data IOT adaptive weighted learning irregular time series perception closed-loop attention mechanism
在线阅读 下载PDF
Coarse-to-fine waterlogging probability assessment based on remote sensing image and social media data 被引量:3
2
作者 Lei Xu Ailong Ma 《Geo-Spatial Information Science》 SCIE CSCD 2021年第2期279-301,I0007,共24页
Urban waterlogging probability assessment is critical to emergency response and policymaking.Remote Sensing(RS)is a rich and reliable data source for waterlogging monitoring and evaluation through water body extractio... Urban waterlogging probability assessment is critical to emergency response and policymaking.Remote Sensing(RS)is a rich and reliable data source for waterlogging monitoring and evaluation through water body extraction derived from the pre-and post-disaster RS images.However,RS images are usually limited to the revisit cycle and cloud cover.To solve this issue,social media data have been considered as another data source which are immune to the weather such as clouds and can reflect the real-time public response for disaster,which leads itself a compensation for RS images.In this paper,we propose a coarse-to-fine waterlogging probability assessment framework based on multisource data including real-time social media data,near real-time RS image and historical geographic information,in which a coarse waterlogging probability map is refined by using the real-time information extracted from social media data to acquire a more accurate waterlogging probability.Firstly,to generate a coarse waterlogging probability map,the historical inundated areas are derived from Digital Elevation Model(DEM)and historical waterlogging points,then the geographic features are extracted from DEM and RS image,which will be input to a Random Forest(RF)classifier to estimate the likelihood of hazards.Secondly,the real-time waterlogging-related information is extracted from social media data,where the Convolutional Neural Network(CNN)model is applied to exploit the semantic information of sentences by capturing the local and position-invariant features using convolution kernel.Finally,fine waterlogging probability map scan be generated based on morphological method,in which real-time waterlogging-related social media data are taken as isolated highlight point and used to refine the coarse waterlogging probability map by a gray dilation pattern considering the distance-decay effect.The 2016 Wuhan waterlogging and 2018 Chengdu water-logging are taken as case studies to demonstrate the effectiveness of the proposed framework.It can be concluded from the results that by integrating RS image and social media data,more accurate waterlogging probability maps can be generated,which can be further applied for inundated areas identification and disaster monitoring. 展开更多
关键词 Remote sensing social media urban waterlogging data fusion
原文传递
Progress of Geological Survey Using Airborne Hyperspectral Remote Sensing Data in the Gansu and Qinghai Regions 被引量:3
3
作者 ZHAO Yingjun QIN Kai +6 位作者 SUN Yu LIU Dechang TIAN Feng PEI Chengkai YANG Yanjie YANG Guofang ZHOU Jiajing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第5期1783-1784,共2页
Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Theref... Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Therefore, they can be effectively used to identify these grotmd objects which are difficult to discriminate by using wide-band data, and show much promise in geological survey. At the height of 1500 m, have 36 bands in visible to the CASI hyperspectral data near-infrared spectral range, with a spectral resolution of 19 nm and a space resolution of 0.9 m. The SASI data have 101 bands in the shortwave infrared spectral range, with a spectral resolution of 15 nm and a space resolution of 2.25 m. In 2010, China Geological Survey deployed an airborne CASI/SASI hyperspectral measurement project, and selected the Liuyuan and Fangshankou areas in the Beishan metallogenic belt of Gansu Province, and the Nachitai area of East Kunlun metallogenic belt in Qinghai Province to conduct geological survey. The work period of this project was three years. 展开更多
关键词 In Progress of Geological Survey Using Airborne Hyperspectral Remote sensing data in the Gansu and Qinghai Regions maps
在线阅读 下载PDF
Smart prediction of rock crack opening displacement from noisy data recorded by distributed fiber optic sensing
4
作者 Shuai Zhao Shao-Qun Lin +3 位作者 Dao-Yuan Tan Hong-Hu Zhu Zhen-Yu Yin Jian-Hua Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2619-2632,共14页
The commonly used method for estimating crack opening displacement(COD)is based on analytical models derived from strain transferring.However,when large background noise exists in distributed fiber optic sensing(DFOS)... The commonly used method for estimating crack opening displacement(COD)is based on analytical models derived from strain transferring.However,when large background noise exists in distributed fiber optic sensing(DFOS)data,estimating COD through an analytical model is very difficult even if the DFOS data have been denoised.To address this challenge,this study proposes a machine learning(ML)-based methodology to complete rock's COD estimation from establishment of a dataset with one-to-one correspondence between strain sequence and COD to the optimization of ML models.The Bayesian optimization is used via the Hyperopt Python library to determine the appropriate hyper-parameters of four ML models.To ensure that the best hyper-parameters will not be missing,the configuration space in Hyperopt is specified by probability distribution.The four models are trained using DFOS data with minimal noise while being examined on datasets with different noise levels to test their anti-noise robustness.The proposed models are compared each other in terms of goodness of fit and mean squared error.The results show that the Bayesian optimization-based random forest is promising to estimate the COD of rock using noisy DFOS data. 展开更多
关键词 Rock microcrack Crack opening displacement Bayesian optimization-based random forest Anti-noise robustness Fiber optic sensing data
在线阅读 下载PDF
Reconstructive Mapping from Sparsely-Sampled Groundwater Data Using Compressive Sensing
5
作者 T.-W. Lee J. Y. Lee +2 位作者 J. E. Park H. Bellerova M. Raudensky 《Journal of Geographic Information System》 2021年第3期287-301,共15页
Compressive sensing is a powerful method for reconstruction of sparsely-sampled data, based on statistical optimization. It can be applied to a range of flow measurement and visualization data, and in this work we sho... Compressive sensing is a powerful method for reconstruction of sparsely-sampled data, based on statistical optimization. It can be applied to a range of flow measurement and visualization data, and in this work we show the usage in groundwater mapping. Due to scarcity of water in many regions of the world, including southwestern United States, monitoring and management of groundwater is of utmost importance. A complete mapping of groundwater is difficult since the monitored sites are far from one another, and thus the data sets are considered extremely “sparse”. To overcome this difficulty in complete mapping of groundwater, compressive sensing is an ideal tool, as it bypasses the classical Nyquist criterion. We show that compressive sensing can effectively be used for reconstructions of groundwater level maps, by validating against data. This approach can have an impact on geographical sensing and information, as effective monitoring and management are enabled without constructing numerous or expensive measurement sites for groundwater. 展开更多
关键词 Visualization data Compressive sensing Reconstruction MAPPING
在线阅读 下载PDF
Deriving big geochemical data from high-resolution remote sensing data via machine learning:Application to a tailing storage facility in the Witwatersrand goldfields
6
作者 Steven E.Zhang Glen T.Nwaila +2 位作者 Julie E.Bourdeau Yousef Ghorbani Emmanuel John M.Carranza 《Artificial Intelligence in Geosciences》 2023年第1期9-21,共13页
Remote sensing data is a cheap form of surficial geoscientific data,and in terms of veracity,velocity and volume,can sometimes be considered big data.Its spatial and spectral resolution continues to improve over time,... Remote sensing data is a cheap form of surficial geoscientific data,and in terms of veracity,velocity and volume,can sometimes be considered big data.Its spatial and spectral resolution continues to improve over time,and some modern satellites,such as the Copernicus Programme’s Sentinel-2 remote sensing satellites,offer a spatial resolution of 10 m across many of their spectral bands.The abundance and quality of remote sensing data combined with accumulated primary geochemical data has provided an unprecedented opportunity to inferentially invert remote sensing data into geochemical data.The ability to derive geochemical data from remote sensing data would provide a form of secondary big geochemical data,which can be used for numerous downstream activities,particularly where data timeliness,volume and velocity are important.Major benefactors of secondary geochemical data would be environmental monitoring and applications of artificial intelligence and machine learning in geochemistry,which currently entirely relies on manually derived data that is primarily guided by scientific reduction.Furthermore,it permits the usage of well-established data analysis techniques from geochemistry to remote sensing that allows useable insights to be extracted beyond those typically associated with strictly remote sensing data analysis.Currently,no generally applicable and systematic method to derive chemical elemental concentrations from large-scale remote sensing data have been documented in geosciences.In this paper,we demonstrate that fusing geostatistically-augmented geochemical and remote sensing data produces an abundance of data that enables a more generalized machine learning-based geochemical data generation.We use gold grade data from a South African tailing storage facility(TSF)and data from both the Landsat-8 and Sentinel remote sensing satellites.We show that various machine learning algorithms can be used given the abundance of training data.Consequently,we are able to produce a high resolution(10 m grid size)gold concentration map of the TSF,which demonstrates the potential of our method to be used to guide extraction planning,online resource exploration,environmental monitoring and resource estimation. 展开更多
关键词 Remote sensing Big geochemical data Machine learning Tailing storage facilities Witwatersrand Basin Dry labs
在线阅读 下载PDF
Dynamic of Chinas cultivated land and landcover changes of its typical regions based on remote sensing data 被引量:1
7
作者 张佳华 董文杰 +2 位作者 王长耀 刘纪远 姚凤梅 《Journal of Forestry Research》 SCIE CAS CSCD 2001年第3期183-186,210,共5页
Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigati... Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigation showed that the whole distribution of the cultivated land shifted to Northeast and Northwest China, and as a result, the ecological quality of cultivated land dropped down. The seacoast and cultivated land in the area of Yellow River Mouth expanded by an increasing rate of 0.73 kma-1, with a depositing rate of 2.1 kma-1. The desertification area of the dynamic of Horqin Sandy Land increased from 60.02% of the total land area in1970s to 64.82% in1980s but decreased to 54.90% in early 1990s. As to the change of North Tibet lakes, the water area of the Namu Lake decreased by 38.58 km2 from year 1970 to 1988, with a decreasing rate of 2.14 km2a-1. 展开更多
关键词 Remote sensing data Cultivated land Landcover change Typical ecological regions China
在线阅读 下载PDF
Review of large scale crop remote sensing monitoring based on MODIS data 被引量:1
8
作者 刘丹 杨风暴 +2 位作者 李大威 梁若飞 冯裴裴 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期193-204,共12页
China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this pap... China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this paper,by selecting moderateresolution imaging spectroradiometer(MODIS)data as the main information source,on the basis of spectral and biological characteristics mechanism of the crop,and using the freely available advantage of hyperspectral temporal MODIS data,conduct large scale agricultural remote sensing monitoring research,develop applicable model and algorithm,which can achieve large scale remote sensing extraction and yield estimation of major crop type information,and improve the accuracy of crop quantitative remote sensing.Moreover,the present situation of global crop remote sensing monitoring based on MODIS data is analyzed.Meanwhile,the climate and environment grid agriculture information system using large-scale agricultural condition remote sensing monitoring has been attempted preliminary. 展开更多
关键词 moderate-resolution imaging spectroradiometer(MODIS)data remote sensing monitoring CROPS
在线阅读 下载PDF
Agricultural remote sensing big data:Management and applications 被引量:40
9
作者 Yanbo Huang CHEN Zhong-xin +2 位作者 YU Tao HUANG Xiang-zhi GU Xing-fa 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第9期1915-1931,共17页
Big data with its vast volume and complexity is increasingly concerned, developed and used for all professions and trades. Remote sensing, as one of the sources for big data, is generating earth-observation data and a... Big data with its vast volume and complexity is increasingly concerned, developed and used for all professions and trades. Remote sensing, as one of the sources for big data, is generating earth-observation data and analysis results daily from the platforms of satellites, manned/unmanned aircrafts, and ground-based structures. Agricultural remote sensing is one of the backbone technologies for precision agriculture, which considers within-field variability for site-specific management instead of uniform management as in traditional agriculture. The key of agricultural remote sensing is, with global positioning data and geographic information, to produce spatially-varied data for subsequent precision agricultural operations. Agricultural remote sensing data, as general remote sensing data, have all characteristics of big data. The acquisition, processing, storage, analysis and visualization of agricultural remote sensing big data are critical to the success of precision agriculture. This paper overviews available remote sensing data resources, recent development of technologies for remote sensing big data management, and remote sensing data processing and management for precision agriculture. A five-layer-fifteen- level (FLFL) satellite remote sensing data management structure is described and adapted to create a more appropriate four-layer-twelve-level (FLTL) remote sensing data management structure for management and applications of agricultural remote sensing big data for precision agriculture where the sensors are typically on high-resolution satellites, manned aircrafts, unmanned aerial vehicles and ground-based structures. The FLTL structure is the management and application framework of agricultural remote sensing big data for precision agriculture and local farm studies, which outlooks the future coordination of remote sensing big data management and applications at local regional and farm scale. 展开更多
关键词 big data remote sensing agricultural information precision agriculture
在线阅读 下载PDF
Framework of SAGI Agriculture Remote Sensing and Its Perspectives in Supporting National Food Security 被引量:16
10
作者 SHI Yun JI Shun-ping +5 位作者 SHAO Xiao-wei TANG Hua-jun WU Wen-bin YANG Peng ZHANG Yong-jun Shibasaki Ryosuke 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第7期1443-1450,共8页
Remote sensing, in particular satellite imagery, has been widely used to map cropland, analyze cropping systems, monitor crop changes, and estimate yield and production. However, although satellite imagery is useful w... Remote sensing, in particular satellite imagery, has been widely used to map cropland, analyze cropping systems, monitor crop changes, and estimate yield and production. However, although satellite imagery is useful within large scale agriculture applications (such as on a national or provincial scale), it may not supply sufifcient information with adequate resolution, accurate geo-referencing, and specialized biological parameters for use in relation to the rapid developments being made in modern agriculture. Information that is more sophisticated and accurate is required to support reliable decision-making, thereby guaranteeing agricultural sustainability and national food security. To achieve this, strong integration of information is needed from multi-sources, multi-sensors, and multi-scales. In this paper, we propose a new framework of satellite, aerial, and ground-integrated (SAGI) agricultural remote sensing for use in comprehensive agricultural monitoring, modeling, and management. The prototypes of SAGI agriculture remote sensing are ifrst described, followed by a discussion of the key techniques used in joint data processing, image sequence registration and data assimilation. Finally, the possible applications of the SAGI system in supporting national food security are discussed. 展开更多
关键词 SAGI agriculture remote sensing multi-platform data processing food security
在线阅读 下载PDF
Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS 被引量:11
11
作者 Arief Wijaya Sandi Kusnadi +1 位作者 Richard Gloaguen Hermann Heilmeier 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第1期1-12,I0001,共13页
This study presents the utility of remote sensing (RS), GIS and field observation data to estimate above ground biomass (AGB) and stem volume over tropical forest environment. Application of those data for the mod... This study presents the utility of remote sensing (RS), GIS and field observation data to estimate above ground biomass (AGB) and stem volume over tropical forest environment. Application of those data for the modeling of forest properties is site specific and highly uncertain, thus further study is encouraged. In this study we used 1460 sampling plots collected in 16 transects measuring tree diameter (DBH) and other forest properties which were useful for the biomass assessment. The study was carded out in tropical forest region in East Kalimantan, Indo- nesia. The AGB density was estimated applying an existing DBH - biomass equation. The estimate was superimposed over the modified GIS map of the study area, and the biomass density of each land cover was calculated. The RS approach was performed using a subset of sample data to develop the AGB and stem volume linear equation models. Pearson correlation statistics test was conducted using ETM bands reflectance, vegetation indices, image transform layers, Principal Component Analysis (PCA) bands, Tasseled Cap (TC), Grey Level Co-Occurrence Matrix (GLCM) texture features and DEM data as the predictors. Two linear models were generated from the significant RS data. To analyze total biomass and stem volume of each land cover, Landsat ETM images from 2000 and 2003 were preprocessed, classified using maximum likelihood method, and filtered with the majority analysis. We found 158±16 m^3.ha^-1 of stem volume and 168±15 t.ha^-1 of AGB estimated from RS approach, whereas the field measurement and GIS estimated 157±92 m^3.ha^-1 and 167±94 t.ha^-1 of stem volume and AGB, respectively. The dynamics of biomass abundance from 2000 to 2003 were assessed from multi temporal ETM data and we found a slightly declining trend of total biomass over these periods. Remote sensing approach estimated lower biomass abundance than did the GIS and field measurement data. The earlier approach predicted 10.5 Gt and 10.3 Gt of total biomasses in 2000 and 2003, while the later estimated 11.9 Gt and 11.6 Gt of total biomasses, respectively. We found that GLCM mean texture features showed markedly strong correlations with stem volume and biomass. 展开更多
关键词 above ground biomass stem volume remote sensing GIS field observation data
在线阅读 下载PDF
Algorithmic Foundation and Software Tools for Extracting Shoreline Features from Remote Sensing Imagery and LiDAR Data 被引量:9
12
作者 Hongxing Liu Lei Wang +2 位作者 Douglas J. Sherman Qiusheng Wu Haibin Su 《Journal of Geographic Information System》 2011年第2期99-119,共21页
This paper presents algorithmic components and corresponding software routines for extracting shoreline features from remote sensing imagery and LiDAR data. Conceptually, shoreline features are treated as boundary lin... This paper presents algorithmic components and corresponding software routines for extracting shoreline features from remote sensing imagery and LiDAR data. Conceptually, shoreline features are treated as boundary lines between land objects and water objects. Numerical algorithms have been identified and de-vised to segment and classify remote sensing imagery and LiDAR data into land and water pixels, to form and enhance land and water objects, and to trace and vectorize the boundaries between land and water ob-jects as shoreline features. A contouring routine is developed as an alternative method for extracting shore-line features from LiDAR data. While most of numerical algorithms are implemented using C++ program-ming language, some algorithms use available functions of ArcObjects in ArcGIS. Based on VB .NET and ArcObjects programming, a graphical user’s interface has been developed to integrate and organize shoreline extraction routines into a software package. This product represents the first comprehensive software tool dedicated for extracting shorelines from remotely sensed data. Radarsat SAR image, QuickBird multispectral image, and airborne LiDAR data have been used to demonstrate how these software routines can be utilized and combined to extract shoreline features from different types of input data sources: panchromatic or single band imagery, color or multi-spectral image, and LiDAR elevation data. Our software package is freely available for the public through the internet. 展开更多
关键词 SHORELINE Extraction Remote sensing IMAGERY LiDAR data ArcGIS ARCOBJECTS VB.NET
暂未订购
Integrating multisource RS data and GIS techniques to assist the evaluation of resource-environment carrying capacity in karst mountainous area 被引量:9
13
作者 PU Jun-wei ZHAO Xiao-qing +4 位作者 MIAO Pei-pei LI Si-nan TAN Kun WANG Qian TANG Wei 《Journal of Mountain Science》 SCIE CSCD 2020年第10期2528-2547,共20页
The karst mountainous area is an ecologically fragile region with prominent humanland contradictions.The resource-environment carrying capacity(RECC)of this region needs to be further clarified.The development of remo... The karst mountainous area is an ecologically fragile region with prominent humanland contradictions.The resource-environment carrying capacity(RECC)of this region needs to be further clarified.The development of remote sensing(RS)and geographic information system(GIS)provides data sources and processing platform for RECC monitoring.This study analyzed and established the evaluation index system of RECC by considering particularity in the karst mountainous area of Southwest China;processed multisource RS data(Sentinel-2,Aster-DEM and Landsat-8)to extract the spatial distributions of nine key indexes by GIS techniques(information classification,overlay analysis and raster calculation);proposed the methods of index integration and fuzzy comprehensive evaluation of the RECC by GIS;and took a typical area,Guangnan County in Yunnan Province of China,as an experimental area to explore the effectiveness of the indexes and methods.The results showed that:(1)The important indexes affecting the RECC of karst mountainous area are water resources,tourism resources,position resources,geographical environment and soil erosion environment.(2)Data on cultivated land,construction land,minerals,transportation,water conservancy,ecosystem services,topography,soil erosion and rocky desertification can be obtained from RS data.GIS techniques integrate the information into the RECC results.The data extraction and processing methods are feasible on evaluating RECC.(3)The RECC of Guangnan County was in the mid-carrying level in 2018.The midcarrying and low-carrying levels were the main types,accounting for more than 80.00%of the total study area.The areas with high carrying capacity were mainly distributed in the northern regions of the northwest-southeast line of the county,and other areas have a low carrying capacity comparatively.The coordination between regional resource-environment status and socioeconomic development is the key to improve RECC.This study explores the evaluation index system of RECC in karst mountainous area and the application of multisource RS data and GIS techniques in the comprehensive evaluation.The methods can be applied in related fields to provide suggestions for data/information extraction and integration,and sustainable development. 展开更多
关键词 Carrying capacity Multisource rs data GIS techniques Evaluation index system data Integration Karst mountainous area Fuzzy comprehensive evaluation method
原文传递
Remote sensing of human beings-a perspective from nighttime light 被引量:6
14
作者 Deren Li Xia Zhao Xi Li 《Geo-Spatial Information Science》 SCIE EI CSCD 2016年第1期69-79,共11页
City lights,fishing boats,and oil fields are the major sources of nighttime lights,therefore the nighttime light images provide a unique source to map human beings and their activities from outer space.While most of t... City lights,fishing boats,and oil fields are the major sources of nighttime lights,therefore the nighttime light images provide a unique source to map human beings and their activities from outer space.While most of the scholars focused on application of nighttime light remote sensing in urbanization and regional development,the actual fields are much wider.This paper summarized the applications of nighttime light remote sensing into fields such as the estimation of socioeconomic parameters,monitoring urbanization,evaluation of important events,analyzing light pollution,fishery,etc.For estimation of socioeconomic parameters,the most promising progress is that Gross Domestic Product and its growth rate have been estimated with statistical data and nighttime light data using econometric models.For monitoring urbanization,urban area and its dynamics can be extracted using different classification methods,and spatial analysis has been employed to map urban agglomeration.As sharp changes of nighttime light are associated with important socioeconomic events,the images have been used to evaluate humanitarian disasters,especially in the current Syrian and Iraqi wars.Light pollution is another hotspot of nighttime light application,as the night light is related to some diseases and abnormal behavior of animals,and the nighttime light images can provide light pollution information on large scales so that it is much easier to analyze the effects of light pollutions.In each field,we listed typical cases of the applications.At last,future studies of nighttime light remote sensing have been predicted. 展开更多
关键词 Nighttime lights socioeconomics human activities remote sensing data mining
原文传递
Urban sprawl and its impact on sustainable urban development:a combination of remote sensing and social media data 被引量:7
15
作者 Zhenfeng Shao Neema S.Sumari +3 位作者 Aleksei Portnov Fanan Ujoh Walter Musakwa Paulo J.Mandela 《Geo-Spatial Information Science》 SCIE CSCD 2021年第2期241-255,I0005,共16页
Urbanization is one of the most impactful human activities across the world today affecting the quality of urban life and its sustainable development.Urbanization in Africa is occurring at an unprecedented rate and it... Urbanization is one of the most impactful human activities across the world today affecting the quality of urban life and its sustainable development.Urbanization in Africa is occurring at an unprecedented rate and it threatens the attainment of Sustainable Development Goals(SDGs).Urban sprawl has resulted in unsustainable urban development patterns from social,environmental,and economic perspectives.This study is among the first examples of research in Africa to combine remote sensing data with social media data to determine urban sprawl from 2011 to 2017 in Morogoro urban municipality,Tanzania.Random Forest(RF)method was applied to accomplish imagery classification and location-based social media(Twitter usage)data were obtained through a Twitter Application Programming Interface(API).Morogoro urban municipality was classified into built-up,vegetation,agriculture,and water land cover classes while the classification results were validated by the generation of 480 random points.Using the Kernel function,the study measured the location of Twitter users within a 1 km buffer from the center of the city.The results indicate that,expansion of the city(built-up land use),which is primarily driven by population expansion,has negative impacts on ecosystem services because pristine grasslands and forests which provide essential ecosystem services such as carbon sequestration and support for biodiversity have been replaced by built-up land cover.In addition,social media usage data suggest that there is the concentration of Twitter usage within the city center while Twitter usage declines away from the city center with significant spatial and numerical increase in Twitter usage in the study area.The outcome of the study suggests that the combination of remote sensing,social sensing,and population data were useful as a proxy/inference for interpreting urban sprawl and status of access to urban services and infrastructure in Morogoro,and Africa city where data for urban planning is often unavailable,inaccurate,or stale. 展开更多
关键词 URBANIZATION ecosystem services sustainable urban development remote sensing social media data TWITTER Morogoro Tanzania
原文传递
DCGAN Based Spectrum Sensing Data Enhancement for Behavior Recognition in Self-Organized Communication Network 被引量:5
16
作者 Kaixin Cheng Lei Zhu +5 位作者 Changhua Yao Lu Yu Xinrong Wu Xiang Zheng Lei Wang Fandi Lin 《China Communications》 SCIE CSCD 2021年第11期182-196,共15页
Communication behavior recognition is an issue with increasingly importance in the antiterrorism and national defense area.However,the sensing data obtained in actual environment is often not sufficient to accurately ... Communication behavior recognition is an issue with increasingly importance in the antiterrorism and national defense area.However,the sensing data obtained in actual environment is often not sufficient to accurately analyze the communication behavior.Traditional means can hardly utilize the scarce and crude spectrum sensing data captured in a real scene.Thus,communication behavior recognition using raw sensing data under smallsample condition has become a new challenge.In this paper,a data enhanced communication behavior recognition(DECBR)scheme is proposed to meet this challenge.Firstly,a preprocessing method is designed to make the raw spectrum data suitable for the proposed scheme.Then,an adaptive convolutional neural network structure is exploited to carry out communication behavior recognition.Moreover,DCGAN is applied to support data enhancement,which realize communication behavior recognition under small-sample condition.Finally,the scheme is verified by experiments under different data size.The results show that the DECBR scheme can greatly improve the accuracy and efficiency of behavior recognition under smallsample condition. 展开更多
关键词 spectrum sensing communication behavior recognition small-sample data enhancement selforganized network
在线阅读 下载PDF
Establishing evaluation index system for desertification of Keerqin sandy land with remote sensing data 被引量:4
17
作者 FAN Wen-yi ZHANG Wen-hua +1 位作者 YU Su-fang LIU Dan 《Journal of Forestry Research》 SCIE CAS CSCD 2005年第3期209-212,共4页
Keerqin sand land is located in the transitional terrain between the Northeast Plain and Inner Mongolia (42°41′-45°15′N, 118°35′-123°30′ E) in Northeast China and it is seriously affected by ... Keerqin sand land is located in the transitional terrain between the Northeast Plain and Inner Mongolia (42°41′-45°15′N, 118°35′-123°30′ E) in Northeast China and it is seriously affected by desertification. According to the configuration and ecotope of the earths surface, the coverage of vegetation, occupation ratio of bare sandy land and the soil texture were selected as evaluation indexes by using the field investigation data. The evaluation index system of Keerqin sandy desertification was established by using Remote Sensing data. and the occupation ratio of bare sandy land was obtained by mixed spectrum model. This index system is validated by the field investioation data and results indicate that it is suitable for the desertification evaluation of Keerqin.Foundation Item: This study is supported by a grant from the National Natural Science Foundation of China (No. 30371192) 展开更多
关键词 Sandy desertification Evaluation index system Remote sensing data Keerqin sandy land Inner Mongolia
在线阅读 下载PDF
Bernoulli-based random undersampling schemes for 2D seismic data regularization 被引量:4
18
作者 蔡瑞 赵群 +3 位作者 佘德平 杨丽 曹辉 杨勤勇 《Applied Geophysics》 SCIE CSCD 2014年第3期321-330,351,352,共12页
Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing(CS) prov... Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing(CS) provides a fundamentally new paradigm to overcome limitations in data acquisition. Besides the sparse representation of seismic signal in some transform domain and the 1-norm reconstruction algorithm, the seismic data regularization quality of CS-based techniques strongly depends on random undersampling schemes. For 2D seismic data, discrete uniform-based methods have been investigated, where some seismic traces are randomly sampled with an equal probability. However, in theory and practice, some seismic traces with different probability are required to be sampled for satisfying the assumptions in CS. Therefore, designing new undersampling schemes is imperative. We propose a Bernoulli-based random undersampling scheme and its jittered version to determine the regular traces that are randomly sampled with different probability, while both schemes comply with the Bernoulli process distribution. We performed experiments using the Fourier and curvelet transforms and the spectral projected gradient reconstruction algorithm for 1-norm(SPGL1), and ten different random seeds. According to the signal-to-noise ratio(SNR) between the original and reconstructed seismic data, the detailed experimental results from 2D numerical and physical simulation data show that the proposed novel schemes perform overall better than the discrete uniform schemes. 展开更多
关键词 Seismic data regularization compressive sensing Bernoulli distribution sparse transform UNDErsAMPLING 1-norm reconstruction algorithm.
在线阅读 下载PDF
Data Traffic Reduction with Compressed Sensing in an AIoT System 被引量:3
19
作者 Hye-Min Kwon Seng-Phil Hong +1 位作者 Mingoo Kang Jeongwook Seo 《Computers, Materials & Continua》 SCIE EI 2022年第1期1769-1780,共12页
To provide Artificial Intelligence(AI)services such as object detection,Internet of Things(IoT)sensor devices should be able to send a large amount of data such as images and videos.However,this inevitably causes IoT ... To provide Artificial Intelligence(AI)services such as object detection,Internet of Things(IoT)sensor devices should be able to send a large amount of data such as images and videos.However,this inevitably causes IoT networks to be severely overloaded.In this paper,therefore,we propose a novel oneM2M-compliant Artificial Intelligence of Things(AIoT)system for reducing overall data traffic and offering object detection.It consists of some IoT sensor devices with random sampling functions controlled by a compressed sensing(CS)rate,an IoT edge gateway with CS recovery and domain transform functions related to compressed sensing,and a YOLOv5 deep learning function for object detection,and an IoT server.By analyzing the effects of compressed sensing on data traffic reduction in terms of data rate per IoT sensor device,we showed that the proposed AIoT system can reduce the overall data traffic by changing compressed sensing rates of random sampling functions in IoT sensor devices.In addition,we analyzed the effects of the compressed sensing on YOLOv5 object detection in terms of performance metrics such as recall,precision,mAP50,and mAP,and found that recall slightly decreases but precision remains almost constant even though the compressed sensing rate decreases and that mAP50 and mAP are gradually degraded according to the decreased compressed sensing rate.Consequently,if proper compressed sensing rates are chosen,the proposed AIoT system will reduce the overall data traffic without significant performance degradation of YOLOv5. 展开更多
关键词 5G Internet of Things data traffic compressed sensing YOLOv5
在线阅读 下载PDF
High Capacity Data Hiding in Encrypted Image Based on Compressive Sensing for Nonequivalent Resources 被引量:2
20
作者 Di Xiao Jia Liang +2 位作者 Qingqing Ma Yanping Xiang Yushu Zhang 《Computers, Materials & Continua》 SCIE EI 2019年第1期1-13,共13页
To fulfill the requirements of data security in environments with nonequivalent resources,a high capacity data hiding scheme in encrypted image based on compressive sensing(CS)is proposed by fully utilizing the adapta... To fulfill the requirements of data security in environments with nonequivalent resources,a high capacity data hiding scheme in encrypted image based on compressive sensing(CS)is proposed by fully utilizing the adaptability of CS to nonequivalent resources.The original image is divided into two parts:one part is encrypted with traditional stream cipher;the other part is turned to the prediction error and then encrypted based on CS to vacate room simultaneously.The collected non-image data is firstly encrypted with simple stream cipher.For data security management,the encrypted non-image data is then embedded into the encrypted image,and the scrambling operation is used to further improve security.Finally,the original image and non-image data can be separably recovered and extracted according to the request from the valid users with different access rights.Experimental results demonstrate that the proposed scheme outperforms other data hiding methods based on CS,and is more suitable for nonequivalent resources. 展开更多
关键词 COMPRESSIVE sensing encrypted IMAGE data hiding PREDICTION ERROR nonequivalent RESOURCES
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部