We analytically derived the complex Ginzburg-Landau equation from the Liénard form of the discrete FitzHugh Nagumo model by employing the multiple scale expansions in the semidiscrete approximation. The complex G...We analytically derived the complex Ginzburg-Landau equation from the Liénard form of the discrete FitzHugh Nagumo model by employing the multiple scale expansions in the semidiscrete approximation. The complex Ginzburg-Landau equation now governs the dynamics of a pulse propagation along a myelinated nerve fiber where the wave dispersion relation is used to explain the famous phenomena of propagation failure and saltatory conduction. Stability analysis of the pulse soliton solution that mimics the action potential fulfills the Benjamin-Feir criteria for plane wave solutions. Finally, results from our numerical simulations show that as the dissipation along the myelinated axon increases, the nerve impulse broadens and finally degenerates to front solutions.展开更多
In this paper we study the higher accuracy methods - the extrapolation and defect correction for the semidiscrete Galerkin approximations to the solutions of Sobolev and viscoelasticity type equations. The global extr...In this paper we study the higher accuracy methods - the extrapolation and defect correction for the semidiscrete Galerkin approximations to the solutions of Sobolev and viscoelasticity type equations. The global extrapolation and the correction approximations of third order, rather than the pointwise extrapolation results are presented.展开更多
文摘We analytically derived the complex Ginzburg-Landau equation from the Liénard form of the discrete FitzHugh Nagumo model by employing the multiple scale expansions in the semidiscrete approximation. The complex Ginzburg-Landau equation now governs the dynamics of a pulse propagation along a myelinated nerve fiber where the wave dispersion relation is used to explain the famous phenomena of propagation failure and saltatory conduction. Stability analysis of the pulse soliton solution that mimics the action potential fulfills the Benjamin-Feir criteria for plane wave solutions. Finally, results from our numerical simulations show that as the dissipation along the myelinated axon increases, the nerve impulse broadens and finally degenerates to front solutions.
文摘In this paper we study the higher accuracy methods - the extrapolation and defect correction for the semidiscrete Galerkin approximations to the solutions of Sobolev and viscoelasticity type equations. The global extrapolation and the correction approximations of third order, rather than the pointwise extrapolation results are presented.