期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spray characteristics of different regions downstream of a swirl cup
1
作者 Donghui WANG Yong HUANG Hongzhou ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期124-143,共20页
The spray characteristics of different regions downstream of swirl cups play a critical role in cold start and re-ignition of gas turbines.The spray measurements were performed at the fuel pressures of 0.5,0.8,1.0,1.5... The spray characteristics of different regions downstream of swirl cups play a critical role in cold start and re-ignition of gas turbines.The spray measurements were performed at the fuel pressures of 0.5,0.8,1.0,1.5,and 2.0 MPa and the fuel temperatures of-23,-13,-3,7,17 and 27℃,respectively.The droplet size,droplet velocity,droplet number,and instantaneous spatial spray image of sprays from an aviation kerosene Jet-A were measured using a two-component phase Doppler particle analyzer and a digital off-axis holography system.As the fuel pressure and temperature increase,the Sauter Mean Diameter(SMD)and spray non-uniformity of the Spray Shear Layer(SSL)gradually decrease.As the fuel pressure increases,the SMD and spray non-uniformity of the Central Toroidal Recirculation Zone(CTRZ)gradually decrease,and the slopes of these curves both decrease.As the fuel pressure increases,the SMD and spray nonuniformity of the CTRZ rapidly decrease at the fuel temperature of23℃,while slightly decrease at the fuel temperature of 27℃.The droplets in the CTRZ come from 3 different sources:simplex nozzle,venturi,and outside the CTRZ.As the fuel pressure increases,the proportion of droplets recirculated from outside the CTRZ decreases.This study proposed the concept of the“pressure critical point”for the swirl cups.As the fuel temperature decreases,the proportion of droplets recirculated from outside the CTRZ increases below the critical pressure,while decreases above the critical pressure.In addition,through the models of liquid film formation and breakup on the curved cylindrical wall,a semi-theoretical model was established to predict the SMD of SSL for swirl cups.The prediction uncertainty of this model is less than 6%for all 14 conditions in this paper. 展开更多
关键词 Swirl cup Sauter Mean Diameter(SMD) Spray non-uniformity Atomizing regions semi-theoretical prediction Spray nozzles
原文传递
Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments 被引量:14
2
作者 Seyed-Hassan Miraei Ashtiani Alireza Salarikia Mahmood Reza Golzarian 《Information Processing in Agriculture》 EI 2017年第2期128-139,共12页
The drying kinetics of peppermint leaves was studied to determine the best drying method for them.Two drying methods include hot-air and infrared techniques,were employed.Three different temperatures(30,40,50℃)and ai... The drying kinetics of peppermint leaves was studied to determine the best drying method for them.Two drying methods include hot-air and infrared techniques,were employed.Three different temperatures(30,40,50℃)and air velocities(0.5,1,1.5 m/s)were selected for the hot-air drying process.Three levels of infrared intensity(1500,3000,4500 W/m^2),emitter-sample distance(10,15,20 cm)and air speed(0.5,1,1.5 m/s)were used for the infrared drying technique.According to the results,drying had a falling rate over time.Drying kinetics of peppermint leaves was explained and compared using three mathematical models.To determine coefficients of these models,non-linear regression analysis was used.The models were evaluated in terms of reduced chi-square(χ^2),root mean square error(RMSE)and coefficient of determination(R^2)values of experimental and predicted moisture ratios.Statistical analyses indicated that the model with the best fitness in explaining the drying behavior of peppermint samples was the Logarithmic model for hot-air drying and Midilli model for infrared drying.Moisture transfer in peppermint leaves was also described using Fick’s diffusion model.The lowest effective moisture diffusivity(1.096×10^-11m^2/s)occurred during hot-air drying at 30℃ using 0.5 m/s,whereas its highest value(5.928×10^-11m^2/s)belonged to infrared drying using 4500 W/m^2 infrared intensity,0.5 m/s airflow velocity and 10 cm emitter-sample distance.The activation energy for infrared and hot-air drying were ranged from 0.206 to 0.439 W/g,and from 21.476 to 27.784 kJ/mol,respectively. 展开更多
关键词 Drying kinetics Effective diffusivity Energy activation Moisture ratio Moisture removal semi-theoretical model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部