Online target maneuver recognition is an important prerequisite for air combat situation recognition and maneuver decision-making.Conventional target maneuver recognition methods adopt mainly supervised learning metho...Online target maneuver recognition is an important prerequisite for air combat situation recognition and maneuver decision-making.Conventional target maneuver recognition methods adopt mainly supervised learning methods and assume that many sample labels are available.However,in real-world applications,manual sample labeling is often time-consuming and laborious.In addition,airborne sensors collecting target maneuver trajectory information in data streams often cannot process information in real time.To solve these problems,in this paper,an air combat target maneuver recognition model based on an online ensemble semi-supervised classification framework based on online learning,ensemble learning,semi-supervised learning,and Tri-training algorithm,abbreviated as Online Ensemble Semi-supervised Classification Framework(OESCF),is proposed.The framework is divided into four parts:basic classifier offline training stage,online recognition model initialization stage,target maneuver online recognition stage,and online model update stage.Firstly,based on the improved Tri-training algorithm and the fusion decision filtering strategy combined with disagreement,basic classifiers are trained offline by making full use of labeled and unlabeled sample data.Secondly,the dynamic density clustering algorithm of the target maneuver is performed,statistical information of each cluster is calculated,and a set of micro-clusters is obtained to initialize the online recognition model.Thirdly,the ensemble K-Nearest Neighbor(KNN)-based learning method is used to recognize the incoming target maneuver trajectory instances.Finally,to further improve the accuracy and adaptability of the model under the condition of high dynamic air combat,the parameters of the model are updated online using error-driven representation learning,exponential decay function and basic classifier obtained in the offline training stage.The experimental results on several University of California Irvine(UCI)datasets and real air combat target maneuver trajectory data validate the effectiveness of the proposed method in comparison with other semi-supervised models and supervised models,and the results show that the proposed model achieves higher classification accuracy.展开更多
Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate ...Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.展开更多
The classification of respiratory sounds is crucial in diagnosing and monitoring respiratory diseases.However,auscultation is highly subjective,making it challenging to analyze respiratory sounds accurately.Although d...The classification of respiratory sounds is crucial in diagnosing and monitoring respiratory diseases.However,auscultation is highly subjective,making it challenging to analyze respiratory sounds accurately.Although deep learning has been increasingly applied to this task,most existing approaches have primarily relied on supervised learning.Since supervised learning requires large amounts of labeled data,recent studies have explored self-supervised and semi-supervised methods to overcome this limitation.However,these approaches have largely assumed a closedset setting,where the classes present in the unlabeled data are considered identical to those in the labeled data.In contrast,this study explores an open-set semi-supervised learning setting,where the unlabeled data may contain additional,unknown classes.To address this challenge,a distance-based prototype network is employed to classify respiratory sounds in an open-set setting.In the first stage,the prototype network is trained using labeled and unlabeled data to derive prototype representations of known classes.In the second stage,distances between unlabeled data and known class prototypes are computed,and samples exceeding an adaptive threshold are identified as unknown.A new prototype is then calculated for this unknown class.In the final stage,semi-supervised learning is employed to classify labeled and unlabeled data into known and unknown classes.Compared to conventional closed-set semisupervised learning approaches,the proposed method achieved an average classification accuracy improvement of 2%–5%.Additionally,in cases of data scarcity,utilizing unlabeled data further improved classification performance by 6%–8%.The findings of this study are expected to significantly enhance respiratory sound classification performance in practical clinical settings.展开更多
Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,l...Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,labeled data is very scarce due to patient privacy concerns.For researchers,obtaining high-quality labeled images is exceedingly challenging because it involves manual annotation and clinical understanding.In addition,skin datasets are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class similarities of skin lesions.In this paper,we propose a model called Coalition Sample Relation Consistency(CSRC),a consistency-based method that leverages Canonical Correlation Analysis(CCA)to capture the intrinsic relationships between samples.Considering that traditional consistency-based models only focus on the consistency of prediction,we additionally explore the similarity between features by using CCA.We enforce feature relation consistency based on traditional models,encouraging the model to learn more meaningful information from unlabeled data.Finally,considering that cross-entropy loss is not as suitable as the supervised loss when studying with imbalanced datasets(i.e.,ISIC 2017 and ISIC 2018),we improve the supervised loss to achieve better classification accuracy.Our study shows that this model performs better than many semi-supervised methods.展开更多
Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which...Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which can be obtained much easier, a novel semi-supervised classification method named Elastic Sparsity Regularized Support Vector Machine (ESRSVM) is proposed for radio transmitter classification. ESRSVM first constructs an elastic-net graph over data samples to capture the robust and natural discriminating information and then incorporate the information into the manifold learning framework by an elastic sparsity regularization term. Experimental results on 10 GMSK modulated Automatic Identification System radios and 15 FM walkie-talkie radios show that ESRSVM achieves obviously better performance than KNN and SVM, which use only labeled samples for classification, and also outperforms semi-supervised classifier LapSVM based on manifold regularization.展开更多
In general,data contain noises which come from faulty instruments,flawed measurements or faulty communication.Learning with data in the context of classification or regression is inevitably affected by noises in the d...In general,data contain noises which come from faulty instruments,flawed measurements or faulty communication.Learning with data in the context of classification or regression is inevitably affected by noises in the data.In order to remove or greatly reduce the impact of noises,we introduce the ideas of fuzzy membership functions and the Laplacian twin support vector machine(Lap-TSVM).A formulation of the linear intuitionistic fuzzy Laplacian twin support vector machine(IFLap-TSVM)is presented.Moreover,we extend the linear IFLap-TSVM to the nonlinear case by kernel function.The proposed IFLap-TSVM resolves the negative impact of noises and outliers by using fuzzy membership functions and is a more accurate reasonable classi-fier by using the geometric distribution information of labeled data and unlabeled data based on manifold regularization.Experiments with constructed artificial datasets,several UCI benchmark datasets and MNIST dataset show that the IFLap-TSVM has better classification accuracy than other state-of-the-art twin support vector machine(TSVM),intuitionistic fuzzy twin support vector machine(IFTSVM)and Lap-TSVM.展开更多
Near-Earth objects are important not only in studying the early formation of the Solar System,but also because they pose a serious hazard to humanity when they make close approaches to the Earth.Study of their physica...Near-Earth objects are important not only in studying the early formation of the Solar System,but also because they pose a serious hazard to humanity when they make close approaches to the Earth.Study of their physical properties can provide useful information on their origin,evolution,and hazard to human beings.However,it remains challenging to investigate small,newly discovered,near-Earth objects because of our limited observational window.This investigation seeks to determine the visible colors of near-Earth asteroids(NEAs),perform an initial taxonomic classification based on visible colors and analyze possible correlations between the distribution of taxonomic classification and asteroid size or orbital parameters.Observations were performed in the broadband BVRI Johnson−Cousins photometric system,applied to images from the Yaoan High Precision Telescope and the 1.88 m telescope at the Kottamia Astronomical Observatory.We present new photometric observations of 84 near-Earth asteroids,and classify 80 of them taxonomically,based on their photometric colors.We find that nearly half(46.3%)of the objects in our sample can be classified as S-complex,26.3%as C-complex,6%as D-complex,and 15.0%as X-complex;the remaining belong to the A-or V-types.Additionally,we identify three P-type NEAs in our sample,according to the Tholen scheme.The fractional abundances of the C/X-complex members with absolute magnitude H≥17.0 were more than twice as large as those with H<17.0.However,the fractions of C-and S-complex members with diameters≤1 km and>1 km are nearly equal,while X-complex members tend to have sub-kilometer diameters.In our sample,the C/D-complex objects are predominant among those with a Jovian Tisserand parameter of T_(J)<3.1.These bodies could have a cometary origin.C-and S-complex members account for a considerable proportion of the asteroids that are potentially hazardous.展开更多
Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.Howev...Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations.展开更多
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ...Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.展开更多
This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 20...This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers.展开更多
Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal...Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal lung tissue,honeycombing lungs,and Ground Glass Opacity(GGO)in CT images is often challenging for radiologists and may lead to misinterpretations.Although earlier studies have proposed models to detect and classify HCL,many faced limitations such as high computational demands,lower accuracy,and difficulty distinguishing between HCL and GGO.CT images are highly effective for lung classification due to their high resolution,3D visualization,and sensitivity to tissue density variations.This study introduces Honeycombing Lungs Network(HCL Net),a novel classification algorithm inspired by ResNet50V2 and enhanced to overcome the shortcomings of previous approaches.HCL Net incorporates additional residual blocks,refined preprocessing techniques,and selective parameter tuning to improve classification performance.The dataset,sourced from the University Malaya Medical Centre(UMMC)and verified by expert radiologists,consists of CT images of normal,honeycombing,and GGO lungs.Experimental evaluations across five assessments demonstrated that HCL Net achieved an outstanding classification accuracy of approximately 99.97%.It also recorded strong performance in other metrics,achieving 93%precision,100%sensitivity,89%specificity,and an AUC-ROC score of 97%.Comparative analysis with baseline feature engineering methods confirmed the superior efficacy of HCL Net.The model significantly reduces misclassification,particularly between honeycombing and GGO lungs,enhancing diagnostic precision and reliability in lung image analysis.展开更多
Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstruc...Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments.展开更多
Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an imp...Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.展开更多
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru...Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.展开更多
Semi-Supervised Classification (SSC),which makes use of both labeled and unlabeled data to determine classification borders in feature space,has great advantages in extracting classification information from mass data...Semi-Supervised Classification (SSC),which makes use of both labeled and unlabeled data to determine classification borders in feature space,has great advantages in extracting classification information from mass data.In this paper,a novel SSC method based on Gaussian Mixture Model (GMM) is proposed,in which each class’s feature space is described by one GMM.Experiments show the proposed method can achieve high classification accuracy with small amount of labeled data.However,for the same accuracy,supervised classification methods such as Support Vector Machine,Object Oriented Classification,etc.should be provided with much more labeled data.展开更多
Most stream data classification algorithms apply the supervised learning strategy which requires massive labeled data.Such approaches are impractical since labeled data are usually hard to obtain in reality.In this pa...Most stream data classification algorithms apply the supervised learning strategy which requires massive labeled data.Such approaches are impractical since labeled data are usually hard to obtain in reality.In this paper,we build a clustering feature decision tree model,CFDT,from data streams having both unlabeled and a small number of labeled examples.CFDT applies a micro-clustering algorithm that scans the data only once to provide the statistical summaries of the data for incremental decision tree induction.Micro-clusters also serve as classifiers in tree leaves to improve classification accuracy and reinforce the any-time property.Our experiments on synthetic and real-world datasets show that CFDT is highly scalable for data streams while gener-ating high classification accuracy with high speed.展开更多
Many researchers have applied clustering to handle semi-supervised classification of data streams with concept drifts.However,the generalization ability for each specific concept cannot be steadily improved,and the co...Many researchers have applied clustering to handle semi-supervised classification of data streams with concept drifts.However,the generalization ability for each specific concept cannot be steadily improved,and the concept drift detection method without considering the local structural information of data cannot accurately detect concept drifts.This paper proposes to solve these problems by BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies)ensemble and local structure mapping.The local structure mapping strategy is utilized to compute local similarity around each sample and combined with semi-supervised Bayesian method to perform concept detection.If a recurrent concept is detected,a historical BIRCH ensemble classifier is selected to be incrementally updated;otherwise a new BIRCH ensemble classifier is constructed and added into the classifier pool.The extensive experiments on several synthetic and real datasets demonstrate the advantage of the proposed algorithm.展开更多
Deep learning significantly improves the accuracy of remote sensing image scene classification,benefiting from the large-scale datasets.However,annotating the remote sensing images is time-consuming and even tough for...Deep learning significantly improves the accuracy of remote sensing image scene classification,benefiting from the large-scale datasets.However,annotating the remote sensing images is time-consuming and even tough for experts.Deep neural networks trained using a few labeled samples usually generalize less to new unseen images.In this paper,we propose a semi-supervised approach for remote sensing image scene classification based on the prototype-based consistency,by exploring massive unlabeled images.To this end,we,first,propose a feature enhancement module to extract discriminative features.This is achieved by focusing the model on the foreground areas.Then,the prototype-based classifier is introduced to the framework,which is used to acquire consistent feature representations.We conduct a series of experiments on NWPU-RESISC45 and Aerial Image Dataset(AID).Our method improves the State-Of-The-Art(SOTA)method on NWPU-RESISC45 from 92.03%to 93.08%and on AID from 94.25%to 95.24%in terms of accuracy.展开更多
基金the support received from the Excellent Doctoral Dissertation Fund of Air Force Engineering University,China.
文摘Online target maneuver recognition is an important prerequisite for air combat situation recognition and maneuver decision-making.Conventional target maneuver recognition methods adopt mainly supervised learning methods and assume that many sample labels are available.However,in real-world applications,manual sample labeling is often time-consuming and laborious.In addition,airborne sensors collecting target maneuver trajectory information in data streams often cannot process information in real time.To solve these problems,in this paper,an air combat target maneuver recognition model based on an online ensemble semi-supervised classification framework based on online learning,ensemble learning,semi-supervised learning,and Tri-training algorithm,abbreviated as Online Ensemble Semi-supervised Classification Framework(OESCF),is proposed.The framework is divided into four parts:basic classifier offline training stage,online recognition model initialization stage,target maneuver online recognition stage,and online model update stage.Firstly,based on the improved Tri-training algorithm and the fusion decision filtering strategy combined with disagreement,basic classifiers are trained offline by making full use of labeled and unlabeled sample data.Secondly,the dynamic density clustering algorithm of the target maneuver is performed,statistical information of each cluster is calculated,and a set of micro-clusters is obtained to initialize the online recognition model.Thirdly,the ensemble K-Nearest Neighbor(KNN)-based learning method is used to recognize the incoming target maneuver trajectory instances.Finally,to further improve the accuracy and adaptability of the model under the condition of high dynamic air combat,the parameters of the model are updated online using error-driven representation learning,exponential decay function and basic classifier obtained in the offline training stage.The experimental results on several University of California Irvine(UCI)datasets and real air combat target maneuver trajectory data validate the effectiveness of the proposed method in comparison with other semi-supervised models and supervised models,and the results show that the proposed model achieves higher classification accuracy.
基金financial support provided by the Natural Science Foundation of Hebei Province,China(No.E2024105036)the Tangshan Talent Funding Project,China(Nos.B202302007 and A2021110015)+1 种基金the National Natural Science Foundation of China(No.52264042)the Australian Research Council(No.IH230100010)。
文摘Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.
基金supported by Innovative Human Resource Development for Local Intellectualization Programthrough the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(IITP-2025-RS-2022-00156360).
文摘The classification of respiratory sounds is crucial in diagnosing and monitoring respiratory diseases.However,auscultation is highly subjective,making it challenging to analyze respiratory sounds accurately.Although deep learning has been increasingly applied to this task,most existing approaches have primarily relied on supervised learning.Since supervised learning requires large amounts of labeled data,recent studies have explored self-supervised and semi-supervised methods to overcome this limitation.However,these approaches have largely assumed a closedset setting,where the classes present in the unlabeled data are considered identical to those in the labeled data.In contrast,this study explores an open-set semi-supervised learning setting,where the unlabeled data may contain additional,unknown classes.To address this challenge,a distance-based prototype network is employed to classify respiratory sounds in an open-set setting.In the first stage,the prototype network is trained using labeled and unlabeled data to derive prototype representations of known classes.In the second stage,distances between unlabeled data and known class prototypes are computed,and samples exceeding an adaptive threshold are identified as unknown.A new prototype is then calculated for this unknown class.In the final stage,semi-supervised learning is employed to classify labeled and unlabeled data into known and unknown classes.Compared to conventional closed-set semisupervised learning approaches,the proposed method achieved an average classification accuracy improvement of 2%–5%.Additionally,in cases of data scarcity,utilizing unlabeled data further improved classification performance by 6%–8%.The findings of this study are expected to significantly enhance respiratory sound classification performance in practical clinical settings.
基金sponsored by the National Natural Science Foundation of China Grant No.62271302the Shanghai Municipal Natural Science Foundation Grant 20ZR1423500.
文摘Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,labeled data is very scarce due to patient privacy concerns.For researchers,obtaining high-quality labeled images is exceedingly challenging because it involves manual annotation and clinical understanding.In addition,skin datasets are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class similarities of skin lesions.In this paper,we propose a model called Coalition Sample Relation Consistency(CSRC),a consistency-based method that leverages Canonical Correlation Analysis(CCA)to capture the intrinsic relationships between samples.Considering that traditional consistency-based models only focus on the consistency of prediction,we additionally explore the similarity between features by using CCA.We enforce feature relation consistency based on traditional models,encouraging the model to learn more meaningful information from unlabeled data.Finally,considering that cross-entropy loss is not as suitable as the supervised loss when studying with imbalanced datasets(i.e.,ISIC 2017 and ISIC 2018),we improve the supervised loss to achieve better classification accuracy.Our study shows that this model performs better than many semi-supervised methods.
基金Supported by the Hi-Tech Research and Development Program of China (No. 2009AAJ130)
文摘Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which can be obtained much easier, a novel semi-supervised classification method named Elastic Sparsity Regularized Support Vector Machine (ESRSVM) is proposed for radio transmitter classification. ESRSVM first constructs an elastic-net graph over data samples to capture the robust and natural discriminating information and then incorporate the information into the manifold learning framework by an elastic sparsity regularization term. Experimental results on 10 GMSK modulated Automatic Identification System radios and 15 FM walkie-talkie radios show that ESRSVM achieves obviously better performance than KNN and SVM, which use only labeled samples for classification, and also outperforms semi-supervised classifier LapSVM based on manifold regularization.
基金This work was supported by the National Natural Science Foundation of China(No.11771275)The second author thanks the partially support of Dutch Research Council(No.040.11.724).
文摘In general,data contain noises which come from faulty instruments,flawed measurements or faulty communication.Learning with data in the context of classification or regression is inevitably affected by noises in the data.In order to remove or greatly reduce the impact of noises,we introduce the ideas of fuzzy membership functions and the Laplacian twin support vector machine(Lap-TSVM).A formulation of the linear intuitionistic fuzzy Laplacian twin support vector machine(IFLap-TSVM)is presented.Moreover,we extend the linear IFLap-TSVM to the nonlinear case by kernel function.The proposed IFLap-TSVM resolves the negative impact of noises and outliers by using fuzzy membership functions and is a more accurate reasonable classi-fier by using the geometric distribution information of labeled data and unlabeled data based on manifold regularization.Experiments with constructed artificial datasets,several UCI benchmark datasets and MNIST dataset show that the IFLap-TSVM has better classification accuracy than other state-of-the-art twin support vector machine(TSVM),intuitionistic fuzzy twin support vector machine(IFTSVM)and Lap-TSVM.
基金funded by the China National Space Administration(KJSP2023020105)supported by the National Key R&D Program of China(Grant No.2023YFA1608100)+2 种基金the NSFC(Grant No.62227901)the Minor Planet Foundationsupported by the Egyptian Science,Technology&Innovation Funding Authority(STDF)under Grant No.48102.
文摘Near-Earth objects are important not only in studying the early formation of the Solar System,but also because they pose a serious hazard to humanity when they make close approaches to the Earth.Study of their physical properties can provide useful information on their origin,evolution,and hazard to human beings.However,it remains challenging to investigate small,newly discovered,near-Earth objects because of our limited observational window.This investigation seeks to determine the visible colors of near-Earth asteroids(NEAs),perform an initial taxonomic classification based on visible colors and analyze possible correlations between the distribution of taxonomic classification and asteroid size or orbital parameters.Observations were performed in the broadband BVRI Johnson−Cousins photometric system,applied to images from the Yaoan High Precision Telescope and the 1.88 m telescope at the Kottamia Astronomical Observatory.We present new photometric observations of 84 near-Earth asteroids,and classify 80 of them taxonomically,based on their photometric colors.We find that nearly half(46.3%)of the objects in our sample can be classified as S-complex,26.3%as C-complex,6%as D-complex,and 15.0%as X-complex;the remaining belong to the A-or V-types.Additionally,we identify three P-type NEAs in our sample,according to the Tholen scheme.The fractional abundances of the C/X-complex members with absolute magnitude H≥17.0 were more than twice as large as those with H<17.0.However,the fractions of C-and S-complex members with diameters≤1 km and>1 km are nearly equal,while X-complex members tend to have sub-kilometer diameters.In our sample,the C/D-complex objects are predominant among those with a Jovian Tisserand parameter of T_(J)<3.1.These bodies could have a cometary origin.C-and S-complex members account for a considerable proportion of the asteroids that are potentially hazardous.
基金funded by the National Key Research and Development Program of China(Grant No.2024YFE0209000)the NSFC(Grant No.U23B2019).
文摘Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01296).
文摘Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.
文摘This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers.
文摘Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal lung tissue,honeycombing lungs,and Ground Glass Opacity(GGO)in CT images is often challenging for radiologists and may lead to misinterpretations.Although earlier studies have proposed models to detect and classify HCL,many faced limitations such as high computational demands,lower accuracy,and difficulty distinguishing between HCL and GGO.CT images are highly effective for lung classification due to their high resolution,3D visualization,and sensitivity to tissue density variations.This study introduces Honeycombing Lungs Network(HCL Net),a novel classification algorithm inspired by ResNet50V2 and enhanced to overcome the shortcomings of previous approaches.HCL Net incorporates additional residual blocks,refined preprocessing techniques,and selective parameter tuning to improve classification performance.The dataset,sourced from the University Malaya Medical Centre(UMMC)and verified by expert radiologists,consists of CT images of normal,honeycombing,and GGO lungs.Experimental evaluations across five assessments demonstrated that HCL Net achieved an outstanding classification accuracy of approximately 99.97%.It also recorded strong performance in other metrics,achieving 93%precision,100%sensitivity,89%specificity,and an AUC-ROC score of 97%.Comparative analysis with baseline feature engineering methods confirmed the superior efficacy of HCL Net.The model significantly reduces misclassification,particularly between honeycombing and GGO lungs,enhancing diagnostic precision and reliability in lung image analysis.
基金funded by the Directorate of Research and Community Service,Directorate General of Research and Development,Ministry of Higher Education,Science and Technologyin accordance with the Implementation Contract for the Operational Assistance Program for State Universities,Research Program Number:109/C3/DT.05.00/PL/2025.
文摘Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments.
基金This work is supported by the National Natural Science Foundation of China(Nos.61771154,61603239,61772454,6171101570).
文摘Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01295).
文摘Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.
基金supported by the State Key Laboratory of Remote Sensing Science and Chinese Academy of Surveying & Mapping (Grant No.20903)
文摘Semi-Supervised Classification (SSC),which makes use of both labeled and unlabeled data to determine classification borders in feature space,has great advantages in extracting classification information from mass data.In this paper,a novel SSC method based on Gaussian Mixture Model (GMM) is proposed,in which each class’s feature space is described by one GMM.Experiments show the proposed method can achieve high classification accuracy with small amount of labeled data.However,for the same accuracy,supervised classification methods such as Support Vector Machine,Object Oriented Classification,etc.should be provided with much more labeled data.
基金supported by the National Natural Science Foundation of China (No. 60673024)the "Eleventh Five" Preliminary Research Project of PLA (No. 102060206)
文摘Most stream data classification algorithms apply the supervised learning strategy which requires massive labeled data.Such approaches are impractical since labeled data are usually hard to obtain in reality.In this paper,we build a clustering feature decision tree model,CFDT,from data streams having both unlabeled and a small number of labeled examples.CFDT applies a micro-clustering algorithm that scans the data only once to provide the statistical summaries of the data for incremental decision tree induction.Micro-clusters also serve as classifiers in tree leaves to improve classification accuracy and reinforce the any-time property.Our experiments on synthetic and real-world datasets show that CFDT is highly scalable for data streams while gener-ating high classification accuracy with high speed.
基金This work was supported by the National Natural Science Foundation of China under Grant No.61866007the Natural Science Foundation of Guangxi Zhuang Autonomous Region of China under Grant No.2018GXNSFDA138006Humanities and Social Sciences Research Projects of the Ministry of Education of China under Grant No.17JDGC022.
文摘Many researchers have applied clustering to handle semi-supervised classification of data streams with concept drifts.However,the generalization ability for each specific concept cannot be steadily improved,and the concept drift detection method without considering the local structural information of data cannot accurately detect concept drifts.This paper proposes to solve these problems by BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies)ensemble and local structure mapping.The local structure mapping strategy is utilized to compute local similarity around each sample and combined with semi-supervised Bayesian method to perform concept detection.If a recurrent concept is detected,a historical BIRCH ensemble classifier is selected to be incrementally updated;otherwise a new BIRCH ensemble classifier is constructed and added into the classifier pool.The extensive experiments on several synthetic and real datasets demonstrate the advantage of the proposed algorithm.
基金supported in part by the National Natural Science Foundation of China(No.12302252)。
文摘Deep learning significantly improves the accuracy of remote sensing image scene classification,benefiting from the large-scale datasets.However,annotating the remote sensing images is time-consuming and even tough for experts.Deep neural networks trained using a few labeled samples usually generalize less to new unseen images.In this paper,we propose a semi-supervised approach for remote sensing image scene classification based on the prototype-based consistency,by exploring massive unlabeled images.To this end,we,first,propose a feature enhancement module to extract discriminative features.This is achieved by focusing the model on the foreground areas.Then,the prototype-based classifier is introduced to the framework,which is used to acquire consistent feature representations.We conduct a series of experiments on NWPU-RESISC45 and Aerial Image Dataset(AID).Our method improves the State-Of-The-Art(SOTA)method on NWPU-RESISC45 from 92.03%to 93.08%and on AID from 94.25%to 95.24%in terms of accuracy.