The implicit partition algorithm used to solve fluid–structure coupling problems has high accuracy,but it requires a long computation time.In this paper,a semi-implicit fluid–structure coupling algorithm based on mo...The implicit partition algorithm used to solve fluid–structure coupling problems has high accuracy,but it requires a long computation time.In this paper,a semi-implicit fluid–structure coupling algorithm based on modal force prediction-correction is proposed to improve the computational efficiency.In the pre-processing stage,the fluid domain is assumed to be a pseudo-elastic solid and merged with the solid domain to form a holistic system,and the normalized modal information of the holistic system is calculated and stored.During the sub-step cycle,the modal superposition method is used to obtain the response of the holistic system with the predicted modal force as the load,so that the deformation of the structure and the updating of the fluid mesh can be achieved simultaneously.After solving the Reynolds-averaged Navier-Stokes equations in the fluid domain,the predicted modal force is corrected and a new sub-step cycle is started until the converged result is obtained.In this method,the computation of the fluid equations and the updating of the dynamic mesh are done implicitly,while the deformation of the structure is done explicitly.Two numerical cases,vortex induced oscillation of an elastic beam and fluid–structure interaction of a final stage blade,are used to verify the efficiency and accuracy of the proposed algorithm.The results show that the proposed method achieves the same accuracy as the implicit method while the computational time is reduced.In the case of the vortex-induced oscillation problem,the computational time can be reduced to 18.6%.In the case of the final stage blade vibration,the computational time can be reduced to 53.8%.展开更多
This paper presents a mass and momentum conservative semi-implicit finite volume(FV)scheme for complex non-hydrostatic free surface flows,interacting with moving solid obstacles.A simplified incompressible Baer-Nunzia...This paper presents a mass and momentum conservative semi-implicit finite volume(FV)scheme for complex non-hydrostatic free surface flows,interacting with moving solid obstacles.A simplified incompressible Baer-Nunziato type model is considered for two-phase flows containing a liquid phase,a solid phase,and the surrounding void.According to the so-called diffuse interface approach,the different phases and consequently the void are described by means of a scalar volume fraction function for each phase.In our numerical scheme,the dynamics of the liquid phase and the motion of the solid are decoupled.The solid is assumed to be a moving rigid body,whose motion is prescribed.Only after the advection of the solid volume fraction,the dynamics of the liquid phase is considered.As usual in semi-implicit schemes,we employ staggered Cartesian control volumes and treat the nonlinear convective terms explicitly,while the pressure terms are treated implicitly.The non-conservative products arising in the transport equation for the solid volume fraction are treated by a path-conservative approach.The resulting semi-implicit FV discretization of the mass and momentum equations leads to a mildly nonlinear system for the pressure which can be efficiently solved with a nested Newton-type technique.The time step size is only limited by the velocities of the two phases contained in the domain,and not by the gravity wave speed nor by the stiff algebraic relaxation source term,which requires an implicit discretization.The resulting semi-implicit algorithm is first validated on a set of classical incompressible Navier-Stokes test problems and later also adds a fixed and moving solid phase.展开更多
数值天气预报是天气预报业务和防灾减灾的核心科技。中国数值天气预报研究和业务应用一直受到高度重视,在基础理论研究、关键技术突破和业务系统研制方面取得了有广泛国际影响力的研究成果。在回顾中国数值天气预报技术及业务系统发展...数值天气预报是天气预报业务和防灾减灾的核心科技。中国数值天气预报研究和业务应用一直受到高度重视,在基础理论研究、关键技术突破和业务系统研制方面取得了有广泛国际影响力的研究成果。在回顾中国数值天气预报技术及业务系统发展基础上,重点综述中国自主发展的GRAPES(Global Regional Assimilation and PrEdiction System)和YHGSM(YinHe Global Spectral Model)两大业务预报系统的重要科技进展。GRAPES在模式动力框架、四维变分资料同化、卫星资料同化技术、雷达资料同化应用、集合预报和云物理过程等方面实现了技术突破,建立了无缝隙的、包含确定性预报和集合预报系统的中国气象局数值天气预报业务体系。YHGSM持续走谱模式发展路线,突破了干空气质量守恒全球大气谱模式、集合四维变分资料同化、海-陆-气耦合集合预报等技术,建立了以高分辨率全球中期和月延伸数值预报系统为核心的数值预报体系。军队和地方自主研发的数值天气预报系统是长期坚持既定科学技术方向、学术研究和业务研制紧密结合的结果。展开更多
A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal d...A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.展开更多
A meshless method, Moving-Particle Semi-hnplicit Method (MPS) is presented in this paper to simulate the rolling of different 2D ship sections. Sections S. S. 0.5, S.S. 5.0 and S. S. 7.0 of series 60 with CB = 0.6 a...A meshless method, Moving-Particle Semi-hnplicit Method (MPS) is presented in this paper to simulate the rolling of different 2D ship sections. Sections S. S. 0.5, S.S. 5.0 and S. S. 7.0 of series 60 with CB = 0.6 are chosen for the simulation. It shows that the result of MPS is very close to results of experiments or mesh-numerical simulations. In the simulation of MPS, vortices are found periodically in bilges of ship sections. In section S. S. 5.0 and section S. S. 7.0, which are close to the middle ship, two little vortices are found at different bilges of the section, in section S. S. 0.5, which is close to the bow, only one big vortex is found at the bottom of the section, these vortices patterns are consistent with the theory of Ikeda. The distribution of shear stress and pressure on the rolling hull of ship section is calculated. When vortices are in bilges of the section, the sign clmnge of pressure can be found, but in section S. S. 0.5, there is no sign change of pressure because only one vortex in the bottom of the section. With shear stress distribution, it can be found the shear stress in bilges is bigger than that at other part of the ship section. As the free surface is considered, the shear stress of both sides near the free surface is close to zero and even sign changed.展开更多
A meshless numerical simulation method, the moving-particle semi-implicit method (MPS) is presented in this paper to study the sloshing phenomenon in ocean and naval engineering. As a meshless method, MPS uses parti...A meshless numerical simulation method, the moving-particle semi-implicit method (MPS) is presented in this paper to study the sloshing phenomenon in ocean and naval engineering. As a meshless method, MPS uses particles to replace the mesh in traditional methods, the governing equations are discretized by virtue of the relationship of particles, and the Poisson equation of pressure is solved by incomplete Cholesky conjugate gradient method (ICCG), the free surface is tracked by the change of numerical density. A numerical experiment of viscous liquid sloshing tank was presented and compared with the result got by the difference method with the VOF, and an additional modification step was added to make the simulation more stable. The results show that the MPS method is suitable for the simulation of viscous liquid sloshing, with the advantage in arranging the particles easily, especially on some complex curved surface.展开更多
Semi-implicit direct kinetics(SIDK)is an innovative method for the temporal discretization of neutronic equations proposed by J.Banfield.The key approximation of the SIDK method is to substitute a timeaveraged quantit...Semi-implicit direct kinetics(SIDK)is an innovative method for the temporal discretization of neutronic equations proposed by J.Banfield.The key approximation of the SIDK method is to substitute a timeaveraged quantity for the fission source term in the delayed neutron differential equations.Hence,these equations are decoupled from prompt neutron equations and an explicit analytical representation of precursor groups is obtained,which leads to a significant reduction in computational cost.As the fission source is not known in a time step,the original study suggested using a constant quantity pertaining to the previous time step for this purpose,and a reduction in the size of the time step was proposed to lessen the imposed errors.However,this remedy notably diminishes the main advantage of the SIDK method.We discerned that if the original method is properly introduced into the algorithm of the point-implicit solver along with some modifications,the mentioned drawbacks will be mitigated adequately.To test this idea,a novel multigroup,multi-dimensional diffusion code using the finitevolume method and a point-implicit solver is developed which works in both transient and steady states.In addition to the SIDK,two other kinetic methods,i.e.,direct kinetics and higher-order backward discretization,are programmed into the diffusion code for comparison with the proposed model.The final code is tested at different conditions of two well-known transient benchmark problems.Results indicate that while the accuracy of the improved SIDK is closely comparable with the best available kinetic methods,it reduces the total time required for computation by up to 24%.展开更多
基金support of the National Natural Science Foundation of China(No.51675406)the Basic Research Project Group,China(No.514010106-205)。
文摘The implicit partition algorithm used to solve fluid–structure coupling problems has high accuracy,but it requires a long computation time.In this paper,a semi-implicit fluid–structure coupling algorithm based on modal force prediction-correction is proposed to improve the computational efficiency.In the pre-processing stage,the fluid domain is assumed to be a pseudo-elastic solid and merged with the solid domain to form a holistic system,and the normalized modal information of the holistic system is calculated and stored.During the sub-step cycle,the modal superposition method is used to obtain the response of the holistic system with the predicted modal force as the load,so that the deformation of the structure and the updating of the fluid mesh can be achieved simultaneously.After solving the Reynolds-averaged Navier-Stokes equations in the fluid domain,the predicted modal force is corrected and a new sub-step cycle is started until the converged result is obtained.In this method,the computation of the fluid equations and the updating of the dynamic mesh are done implicitly,while the deformation of the structure is done explicitly.Two numerical cases,vortex induced oscillation of an elastic beam and fluid–structure interaction of a final stage blade,are used to verify the efficiency and accuracy of the proposed algorithm.The results show that the proposed method achieves the same accuracy as the implicit method while the computational time is reduced.In the case of the vortex-induced oscillation problem,the computational time can be reduced to 18.6%.In the case of the final stage blade vibration,the computational time can be reduced to 53.8%.
基金funded by the Italian Ministry of Education,University and Research(MIUR)in the frame of the Departments of Excellence Initiative 2018-2027 attributed to DICAM of the University of Trento(grant L.232/2016)in the frame of the PRIN 2017 project Innovative numerical methods for evolutionary partial differential equations and applications,the PRIN 2022 project High order structure-preserving semi-implicit schemes for hyperbolic equations.D.is member of INdAM GNCS and was also co-funded by the European Union NextGenerationEU(PNRR,Spoke 7 CN HPC).Views and opinions expressed are however those of the author(s)only and do not necessarily reflect those of the European Union or the European Research Council.Neither the European Union nor the granting authority can be held responsible for them.
文摘This paper presents a mass and momentum conservative semi-implicit finite volume(FV)scheme for complex non-hydrostatic free surface flows,interacting with moving solid obstacles.A simplified incompressible Baer-Nunziato type model is considered for two-phase flows containing a liquid phase,a solid phase,and the surrounding void.According to the so-called diffuse interface approach,the different phases and consequently the void are described by means of a scalar volume fraction function for each phase.In our numerical scheme,the dynamics of the liquid phase and the motion of the solid are decoupled.The solid is assumed to be a moving rigid body,whose motion is prescribed.Only after the advection of the solid volume fraction,the dynamics of the liquid phase is considered.As usual in semi-implicit schemes,we employ staggered Cartesian control volumes and treat the nonlinear convective terms explicitly,while the pressure terms are treated implicitly.The non-conservative products arising in the transport equation for the solid volume fraction are treated by a path-conservative approach.The resulting semi-implicit FV discretization of the mass and momentum equations leads to a mildly nonlinear system for the pressure which can be efficiently solved with a nested Newton-type technique.The time step size is only limited by the velocities of the two phases contained in the domain,and not by the gravity wave speed nor by the stiff algebraic relaxation source term,which requires an implicit discretization.The resulting semi-implicit algorithm is first validated on a set of classical incompressible Navier-Stokes test problems and later also adds a fixed and moving solid phase.
文摘数值天气预报是天气预报业务和防灾减灾的核心科技。中国数值天气预报研究和业务应用一直受到高度重视,在基础理论研究、关键技术突破和业务系统研制方面取得了有广泛国际影响力的研究成果。在回顾中国数值天气预报技术及业务系统发展基础上,重点综述中国自主发展的GRAPES(Global Regional Assimilation and PrEdiction System)和YHGSM(YinHe Global Spectral Model)两大业务预报系统的重要科技进展。GRAPES在模式动力框架、四维变分资料同化、卫星资料同化技术、雷达资料同化应用、集合预报和云物理过程等方面实现了技术突破,建立了无缝隙的、包含确定性预报和集合预报系统的中国气象局数值天气预报业务体系。YHGSM持续走谱模式发展路线,突破了干空气质量守恒全球大气谱模式、集合四维变分资料同化、海-陆-气耦合集合预报等技术,建立了以高分辨率全球中期和月延伸数值预报系统为核心的数值预报体系。军队和地方自主研发的数值天气预报系统是长期坚持既定科学技术方向、学术研究和业务研制紧密结合的结果。
基金The Major State Basic Research Program of China under contract No. 2012CB417002the National Natural Science Foundation of China under contract Nos 50909065 and 51109039
文摘A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.
基金the National Natural Science Foundation of China (Grant No.50579035)
文摘A meshless method, Moving-Particle Semi-hnplicit Method (MPS) is presented in this paper to simulate the rolling of different 2D ship sections. Sections S. S. 0.5, S.S. 5.0 and S. S. 7.0 of series 60 with CB = 0.6 are chosen for the simulation. It shows that the result of MPS is very close to results of experiments or mesh-numerical simulations. In the simulation of MPS, vortices are found periodically in bilges of ship sections. In section S. S. 5.0 and section S. S. 7.0, which are close to the middle ship, two little vortices are found at different bilges of the section, in section S. S. 0.5, which is close to the bow, only one big vortex is found at the bottom of the section, these vortices patterns are consistent with the theory of Ikeda. The distribution of shear stress and pressure on the rolling hull of ship section is calculated. When vortices are in bilges of the section, the sign clmnge of pressure can be found, but in section S. S. 0.5, there is no sign change of pressure because only one vortex in the bottom of the section. With shear stress distribution, it can be found the shear stress in bilges is bigger than that at other part of the ship section. As the free surface is considered, the shear stress of both sides near the free surface is close to zero and even sign changed.
基金the National Natural Science Foundation under Grant No.50579035
文摘A meshless numerical simulation method, the moving-particle semi-implicit method (MPS) is presented in this paper to study the sloshing phenomenon in ocean and naval engineering. As a meshless method, MPS uses particles to replace the mesh in traditional methods, the governing equations are discretized by virtue of the relationship of particles, and the Poisson equation of pressure is solved by incomplete Cholesky conjugate gradient method (ICCG), the free surface is tracked by the change of numerical density. A numerical experiment of viscous liquid sloshing tank was presented and compared with the result got by the difference method with the VOF, and an additional modification step was added to make the simulation more stable. The results show that the MPS method is suitable for the simulation of viscous liquid sloshing, with the advantage in arranging the particles easily, especially on some complex curved surface.
文摘Semi-implicit direct kinetics(SIDK)is an innovative method for the temporal discretization of neutronic equations proposed by J.Banfield.The key approximation of the SIDK method is to substitute a timeaveraged quantity for the fission source term in the delayed neutron differential equations.Hence,these equations are decoupled from prompt neutron equations and an explicit analytical representation of precursor groups is obtained,which leads to a significant reduction in computational cost.As the fission source is not known in a time step,the original study suggested using a constant quantity pertaining to the previous time step for this purpose,and a reduction in the size of the time step was proposed to lessen the imposed errors.However,this remedy notably diminishes the main advantage of the SIDK method.We discerned that if the original method is properly introduced into the algorithm of the point-implicit solver along with some modifications,the mentioned drawbacks will be mitigated adequately.To test this idea,a novel multigroup,multi-dimensional diffusion code using the finitevolume method and a point-implicit solver is developed which works in both transient and steady states.In addition to the SIDK,two other kinetic methods,i.e.,direct kinetics and higher-order backward discretization,are programmed into the diffusion code for comparison with the proposed model.The final code is tested at different conditions of two well-known transient benchmark problems.Results indicate that while the accuracy of the improved SIDK is closely comparable with the best available kinetic methods,it reduces the total time required for computation by up to 24%.