期刊文献+
共找到330篇文章
< 1 2 17 >
每页显示 20 50 100
On the feasibility of variable separation method based on Hamiltonian system for plane magnetoelectroelastic solids 被引量:5
1
作者 侯国林 阿拉坦仓 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期2753-2758,共6页
The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular dom... The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method. 展开更多
关键词 magnetoelectroelastic solid variable separation method COMPLETENESS general solution
原文传递
Extended Group Foliation Method and Functional Separation of Variables to Nonlinear Wave Equations 被引量:9
2
作者 QU Chang-Zheng ZHANG Shun-Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4X期577-582,共6页
Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to n... Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach. 展开更多
关键词 symmetry group group foliation method nonlinear wave equation functional separation of variables
在线阅读 下载PDF
A SPECIAL METHOD OF FOURIER SERIES WHICH IS EQUAL TO THE METHOD OF SEPARATION OF VARIABLES ON BOUNDARY VALUE PROBLEM
3
作者 Yan Xianggan Wu Jike, Department of Mechanics, Peking Unirersity, Bejing 100871. China 《Acta Mechanica Solida Sinica》 SCIE EI 1997年第3期255-261,共7页
By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution ... By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution is equal to the result of separation of variables. As a result, the non-linear characteristic equations resulting from the method of separation of variables are transformed into polynomial equations that can provide a foundation for approximate computation and asymptotic analysis. 展开更多
关键词 separation of singularity series resolution method of separation of variables boundary value problem characteristic equation
在线阅读 下载PDF
Exactly solving some typical Riemann-Liouville fractional models by a general method of separation of variables
4
作者 Cheng-Shi Liu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第5期46-51,共6页
Finding exact solutions for Riemann–Liouville(RL)fractional equations is very difficult.We propose a general method of separation of variables to study the problem.We obtain several general results and,as application... Finding exact solutions for Riemann–Liouville(RL)fractional equations is very difficult.We propose a general method of separation of variables to study the problem.We obtain several general results and,as applications,we give nontrivial exact solutions for some typical RL fractional equations such as the fractional Kadomtsev–Petviashvili equation and the fractional Langmuir chain equation.In particular,we obtain non-power functions solutions for a kind of RL time-fractional reaction–diffusion equation.In addition,we find that the separation of variables method is more suited to deal with high-dimensional nonlinear RL fractional equations because we have more freedom to choose undetermined functions. 展开更多
关键词 Riemann–Liouville derivative exact solution fractional differential equation separation of variables method
原文传递
Solving mKdV-sinh-Gordon equation by a modified variable separated ordinary differential equation method 被引量:4
5
作者 谢元喜 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第12期5123-5132,共10页
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact sol... By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach. 展开更多
关键词 modified variable separated ODE method mKdV-sinh-Gordon equation explicit andexact solution
原文传递
Variable Separation and Exact Solutions for the Kadomtsev-Petviashvili Equation 被引量:1
6
作者 Lili Song Yadong Shang 《Advances in Pure Mathematics》 2015年第3期121-126,共6页
In the paper, we will discuss the Kadomtsev-Petviashvili Equation which is used to model shallow-water waves with weakly non-linear restoring forces and is also used to model waves in ferromagnetic media by employing ... In the paper, we will discuss the Kadomtsev-Petviashvili Equation which is used to model shallow-water waves with weakly non-linear restoring forces and is also used to model waves in ferromagnetic media by employing the method of variable separation. Abundant exact solutions including global smooth solutions and local blow up solutions are obtained. These solutions would contribute to studying the behavior and blow up properties of the solution of the Kadomtsev-Petviashvili Equation. 展开更多
关键词 Kadomtsev-Petviashvili Equation method of variable separation Global Smooth SOLUTION Local BLOW up SOLUTION
在线阅读 下载PDF
Solving (2+1)-dimensional sine-Poisson equation by a modified variable separated ordinary differential equation method 被引量:1
7
作者 苏卡林 谢元喜 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期40-48,共9页
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa... By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique. 展开更多
关键词 modified variable separated ODE method (2 1)-dimensional sine-Poisson equation explicit and exact solution
原文传递
Some discussions about method for solving the variable separating nonlinear models
8
作者 阮航宇 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期17-24,共8页
Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of th... Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of these equations come from the nonzero seed solution. However, these nonzero seed solutions is likely to result in the divergent phenomena for the other field component of the same equation. The convergence and the signification of all field components should be discussed when someone solves the nonlinear equation using the variable separating method. 展开更多
关键词 variable separating method nonzero seed solution nonlinear equation
原文传递
New Families of Rational Form Variable Separation Solutions to(2+1)-Dimensional Dispersive Long Wave Equations
9
作者 WEN Xiao-Yong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第5期789-793,共5页
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transfor... With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions. 展开更多
关键词 improved mapping approach variable separation method (2+1)-dimensional dispersive long wave equations symbolic computation
在线阅读 下载PDF
Prediction and Analysis of the Force and Shape Parameters in Variable Gauge Rolling 被引量:7
10
作者 Yuanming Liu Zhenhua Wang +4 位作者 Tao Wang Jie Sun Xianguang Zheng Dianhua Zhang Qingxue Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期79-92,共14页
Variable gauge rolling is a new process to obtain a plate for which the thickness changes continuously by continuously and dynamically adjusting the roll gap upward and downward in the rolling process.This technology ... Variable gauge rolling is a new process to obtain a plate for which the thickness changes continuously by continuously and dynamically adjusting the roll gap upward and downward in the rolling process.This technology is an efective method for producing lightweight,low-cost,and economical plates.However,variable gauge rolling is an unsteady process,and the changes in the force and deformation parameters are complex.In this research,based on the minimum energy theory of the variational principle and considering the characteristics of the roll movement and workpiece deformation comprehensively,the internal plastic deformation,friction,shear and tension powers,and the minimum result of the total power functional in upward and downward rolling are obtained with the frst integral and then with a variation of adopting the specifc plastic power and strain rate vector inner product.The analytical results of the deformation and force parameters are also established using the variational method.Then the precision of this model is certifed using the measured values in a medium plate hot rolling plant and the experimental data for Tailor Rolled Blank rolling.Good agreement is found.Additionally,the variation rule of bite angle,neutral angle,and location neutral points are shown,and the change mechanism of the friction parameter on the stress state efect coefcient is given in variable gauge rolling.This research proposes a new mathematical model for rolling process control that provides a scientifc basis and technical support for obtaining an accurate section shape in variable gauge rolling production. 展开更多
关键词 variable gauge rolling Analytical solution Roll separating force Energy method Neutral point
在线阅读 下载PDF
Functional Separable Solutions to Nonlinear Diffusion Equations by Group Foliation Method 被引量:5
11
作者 HU Jia-Yi QU Chang-Zheng YIN Hui 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第2期193-199,共7页
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to thi... We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained. 展开更多
关键词 group foliation method functional separation of variable nonlinear diffusion equation symmetry group
在线阅读 下载PDF
A New 2 + 1-Dimensional Integrable Variable Coefficient Toda Equation
12
作者 Yanan Huang Junhong Yao Ting Su 《Journal of Applied Mathematics and Physics》 2021年第8期2152-2158,共7页
In this paper, a new integrable variable coefficient Toda equation is proposed by utilizing a generalized version of the dressing method. At the same time, we derive the Lax pair of the new integrable variable coeffic... In this paper, a new integrable variable coefficient Toda equation is proposed by utilizing a generalized version of the dressing method. At the same time, we derive the Lax pair of the new integrable variable coefficient Toda equation. The compatibility condition is given, which insures that the new Toda equation is integrable. To further analyze the character of the Toda equation, we derive one soliton solution of the obtained Toda equation by using separation of variables. 展开更多
关键词 The Generalized Dressing method variable Coefficient Toda separation of variables
在线阅读 下载PDF
Functional Separable Solutions of Nonlinear Heat Equations in Non-Newtonian Fluids 被引量:1
13
作者 GOU Ming QU Chang-Zheng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第2期257-262,共6页
We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables... We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables is studied by using the group foliation method. A classification of the equation which admits the functional separable solutions is performed. As a consequence, some solutions to the resulting equations are obtained. 展开更多
关键词 group foliation method functional separation of variable nonlinear heat equation symmetry group
在线阅读 下载PDF
Numerical Solutions of Finite Well in Two Dimensions Using the Finite Difference Time Domain Method
14
作者 Huwaida K.Elgweri Amal Hamed Mohamed Mansor 《Journal of Physical Science and Application》 2022年第1期12-18,共7页
The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method i... The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method is suitable to calculate the ground state of the quantum systems,it has been improved to calculate the higher excited states directly.The improvement is based on modifying the iterative process involved in this method to include two procedures.The first is known as cooling steps and the second is known as a heating step.By determining the required length of the cooling iteration steps using suitable excitation energy estimate,and repeating these two procedures using suitable initial guess function for sufficient times.This modified iteration will lead automatically to the desired excited state.In the two dimensional finite rectangular well potential problem both of the suitable excitation energy and the suitable initial guess wave function are calculated analytically using the separation of variables technique. 展开更多
关键词 Finite difference time domain method diffusion equation separation of variables method finite well potential Schrödinger equation
在线阅读 下载PDF
大空域变计算域数值方法研究
15
作者 李盾 初景江 +3 位作者 李志辉 何跃龙 白鹏 孟旭飞 《兵器装备工程学报》 北大核心 2025年第4期9-17,共9页
大空域多体分离、再入、巡航等长时间、长距离的动态数值模拟,会导致计算域增大、计算量急剧上升。针对此类难题,本研究在三维非结构粘性直角动网格技术的基础上,采用多计算域交替、移动分裂的思路,创新性地提出变计算域数值处理方法。... 大空域多体分离、再入、巡航等长时间、长距离的动态数值模拟,会导致计算域增大、计算量急剧上升。针对此类难题,本研究在三维非结构粘性直角动网格技术的基础上,采用多计算域交替、移动分裂的思路,创新性地提出变计算域数值处理方法。采用双球体分离模型对变计算域方法的可行性和鲁棒性展开对比验证,计算结果证明变计算域方法精度可靠且效率提高。一定程度上实现了气动数值模拟从传统的固定单域计算到动态多域计算的变计算域拓展。 展开更多
关键词 大空域 多体分离 气动数值模拟 变计算域方法 对比验证
在线阅读 下载PDF
基于优化分离变量法的非均质偏微分方程求解分析
16
作者 彭磊 孟虹宇 《佳木斯大学学报(自然科学版)》 2025年第5期169-172,共4页
在工程问题中,非均质偏微分方程常用于描述具有不确定性的物理量状态及其变化,但是在对这类方程求解时常常面临着维数灾难。为了提高其的计算效率,研究提出基于优化分离变量法的非均质偏微分方程求解方法。该方法通过离线与在线阶段建... 在工程问题中,非均质偏微分方程常用于描述具有不确定性的物理量状态及其变化,但是在对这类方程求解时常常面临着维数灾难。为了提高其的计算效率,研究提出基于优化分离变量法的非均质偏微分方程求解方法。该方法通过离线与在线阶段建立全局随机界面问题的模型,在离线阶段对计算区域进行分割,在线阶段应用界面解函数计算得到众多随机抽样点的界面解。实验结果表明研究所提方法能降低计算量,当空间步长为0.01,时间步长为0.001时,最大误差为0.0002,误差值较小,验证了研究方法的有效性。研究为非均质偏微分方程的求解提供更为高效的数值解决方案。 展开更多
关键词 优化分离变量法 非均质偏微分方程 数值求解 求解分析 偏微分方程应用
在线阅读 下载PDF
寒区浅埋隧道围岩非稳态温度场解析研究
17
作者 余俊 姜岸 李东凯 《冰川冻土》 2025年第2期441-452,共12页
寒区围岩冻融循环等地质灾害对隧道结构稳定性的影响不可忽略,因此,对寒区浅埋隧道围岩非稳态温度场进行了解析研究。运用保角变换将隧道围岩区域转换为圆环区域,基于叠加原理将非稳态热传导方程分解为一个稳态热传导方程和一个非稳态... 寒区围岩冻融循环等地质灾害对隧道结构稳定性的影响不可忽略,因此,对寒区浅埋隧道围岩非稳态温度场进行了解析研究。运用保角变换将隧道围岩区域转换为圆环区域,基于叠加原理将非稳态热传导方程分解为一个稳态热传导方程和一个非稳态热传导方程,运用分离变量法和变量代换得到了隧道围岩非稳态温度场的解析解。将解析解与有限元数值模拟的结果及已有文献进行对比,发现解析结果与二者均吻合较好,验证了解析解的正确性。对解析解进行参数分析,发现围岩热扩散率的增大及隧道半径的增加均会加快围岩的导热过程,隧道埋深的增加则会减慢拱顶导热过程;对隧道衬砌法向的非稳态温度场进行对比分析,发现随着所分析法线段的平缓,与隧道衬砌距离相同的点趋于稳态时的温度变化增加,距隧道衬砌越远的点稳态时的变温幅度越高,隧道围岩温度的角向分布呈现弱对称性;对隧道拱顶温度场非稳态分量进行分析,发现越靠近隧道拱顶,且热传导所经时间越短,隧道拱顶温度场中非稳态分量在温度场解析解中占比越大。该研究对寒区隧道结构的温度响应预测有一定参考意义。 展开更多
关键词 浅埋圆形隧道 非稳态温度场 保角变换 分离变量法 变量代换 解析解
原文传递
关于弦振动方程分离变量法的注记
18
作者 秦玉明 查冬兵 《大学数学》 2025年第3期78-84,共7页
通过对弦振动方程初边值问题分离变量法的一些分析,提供了所有处理齐次和非齐次边界条件的各种方法,还给出了基于泛函分析理论的一种新的分离变量法,它适用于变系数和非线性偏微分方程.总而言之,本文给出了分离变量法详细的描述,是对教... 通过对弦振动方程初边值问题分离变量法的一些分析,提供了所有处理齐次和非齐次边界条件的各种方法,还给出了基于泛函分析理论的一种新的分离变量法,它适用于变系数和非线性偏微分方程.总而言之,本文给出了分离变量法详细的描述,是对教材的有益补充,教学上具有一定的参考价值. 展开更多
关键词 弦振动方程 分离变量法 (非)齐次边界条件
在线阅读 下载PDF
双浅埋平行泄压隧洞瞬态渗流场解析研究
19
作者 黄越 姜岸 +2 位作者 余俊 胡正 潘剑超 《岩土工程学报》 北大核心 2025年第S1期244-249,共6页
渗流对隧道设计、施工及运营均有重要影响,隧洞在开挖时会引起瞬态渗流场,其与周围泄压隧洞的渗流场会相互耦合影响。针对双浅埋平行泄压隧道瞬态渗流耦合机制,建立了二维平面应变解析模型。当单一浅埋圆形隧洞存在时,运用保角变换将其... 渗流对隧道设计、施工及运营均有重要影响,隧洞在开挖时会引起瞬态渗流场,其与周围泄压隧洞的渗流场会相互耦合影响。针对双浅埋平行泄压隧道瞬态渗流耦合机制,建立了二维平面应变解析模型。当单一浅埋圆形隧洞存在时,运用保角变换将其二维渗流平面转换为圆环区域,再综合运用叠加法及分离变量法求得了单一隧洞的瞬态渗流场。在此基础上,采用Schwarz迭代法构建双隧道瞬态渗流场迭代算法,通过边界条件动态耦合与时空离散化处理,实现双隧道渗流场的时域叠加解析。该解析结果与数值模拟及已有文献数据的对比验证了其正确性和适用性。本解析模型为复杂地质条件下隧道群渗流相互作用机理研究提供了理论基础,对深部地下工程渗流安全评估与优化设计具有指导意义。 展开更多
关键词 双浅埋平行泄压隧洞 保角变换 分离变量法 解析解
原文传递
时间分数阶KdV方程的精确解
20
作者 范万 芮伟国 洪晓春 《四川大学学报(自然科学版)》 北大核心 2025年第1期45-51,共7页
与整数阶非线性偏微分方程相比,非线性分数阶偏微分方程的求解问题更加困难.本文利用半固定式变量分离法结合平面动力系统的相图法研究了时间分数阶KdV方程的精确解及其动力学行为.在特殊参数条件下,本文获得了方程的各类精确解,讨论了... 与整数阶非线性偏微分方程相比,非线性分数阶偏微分方程的求解问题更加困难.本文利用半固定式变量分离法结合平面动力系统的相图法研究了时间分数阶KdV方程的精确解及其动力学行为.在特殊参数条件下,本文获得了方程的各类精确解,讨论了部分代表性解的性质,并绘制了解的图像,以便更好地理解方程的动力学行为. 展开更多
关键词 时间分数阶KdV方程 半固定式变量分离法 相图 精确解
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部