The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite p...The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite programming problem is presented by making use of two general discrete approximation methods. Simultaneously, the consistence and the epi-convergence of the asymptotic approximation problem are discussed.展开更多
The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unif...The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unified (C, α, ρ, d)-strictly pseudoconvex functions are presented. The sufficient optimality conditions for multiobjective nonsmooth semi-infinite programming are obtained involving these generalized convexity lastly.展开更多
A class of functions called quasi B s invex and pseudo B s invex functions are introduced by using the concept of symmetric gradient. The examples of quasi B s invex and pseudo B s invex functions are given. The suffi...A class of functions called quasi B s invex and pseudo B s invex functions are introduced by using the concept of symmetric gradient. The examples of quasi B s invex and pseudo B s invex functions are given. The sufficient optimality conditions and Mond Weir type duality results are obtained for a nondifferentiable nonlinear semi infinite programming problem involving quasi B s invex and pseudo B s invex functions.展开更多
A class of constrained semi-infinite minimax problem is transformed into a simple constrained problem,by means of discretization decomposition and maximum entropy method,making use of surrogate constraint.The paper de...A class of constrained semi-infinite minimax problem is transformed into a simple constrained problem,by means of discretization decomposition and maximum entropy method,making use of surrogate constraint.The paper deals with the convergence of this asymptotic approach method.展开更多
This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-...This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-type dual model for the nonlinear nondifferentiable multiobjective semiinfinite programming problem and establish weak,strong and strict converse duality theorems relating the primal and the dual problems.展开更多
In this paper,we study optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems.Three new classes of functions,namelyε-pseudoconvex functions of type I and type II andε-quasico...In this paper,we study optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems.Three new classes of functions,namelyε-pseudoconvex functions of type I and type II andε-quasiconvex functions are introduced,respectively.By utilizing these new concepts,sufficient optimality conditions of approximate solutions for the nonsmooth semi-infinite programming problem are established.Some examples are also presented.The results obtained in this paper improve the corresponding results of Son et al.(J Optim Theory Appl 141:389–409,2009).展开更多
In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the ...In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the considered problem and develop an algorithm based on the entropy function.It is shown that the global convergence of the proposed algorithm can be obtained under weaker conditions.Some numerical results are presented to show the potential of the proposed algorithm.展开更多
For the semi-infinite programming (SIP) problem, the authors first convert it into an equivalent nonlinear programming problem with only one inequality constraint by using an integral function, and then propose a sm...For the semi-infinite programming (SIP) problem, the authors first convert it into an equivalent nonlinear programming problem with only one inequality constraint by using an integral function, and then propose a smooth penalty method based on a class of smooth functions. The main feature of this method is that the global solution of the penalty function is not necessarily solved at each iteration, and under mild assumptions, the method is always feasible and efficient when the evaluation of the integral function is not very expensive. The global convergence property is obtained in the absence of any constraint qualifications, that is, any accumulation point of the sequence generated by the algorithm is the solution of the SIP. Moreover, the authors show a perturbation theorem of the method and obtain several interesting results. Furthermore, the authors show that all iterative points remain feasible after a finite number of iterations under the Mangasarian-Fromovitz constraint qualification. Finally, numerical results are given.展开更多
Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells c...Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.展开更多
The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio...The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.展开更多
Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequent...Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time.展开更多
This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digiti...This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives.展开更多
With the rapid development of artificial intelligence technology,AIGC(Artificial Intelligence-Generated Content)has triggered profound changes in the field of high-level language programming courses.This paper deeply ...With the rapid development of artificial intelligence technology,AIGC(Artificial Intelligence-Generated Content)has triggered profound changes in the field of high-level language programming courses.This paper deeply explored the application principles,advantages,and limitations of AIGC in intelligent code generation,analyzed the new mode of human-computer collaboration in high-level language programming courses driven by AIGC,discussed the impact of human-computer collaboration on programming efficiency and code quality through practical case studies,and looks forward to future development trends.This research aims to provide theoretical and practical guidance for high-level language programming courses and promote innovative development of high-level language programming courses under the human-computer collaboration paradigm.展开更多
Computing-in-memory(CIM)has been a promising candidate for artificial-intelligent applications thanks to the absence of data transfer between computation and storage blocks.Resistive random access memory(RRAM)based CI...Computing-in-memory(CIM)has been a promising candidate for artificial-intelligent applications thanks to the absence of data transfer between computation and storage blocks.Resistive random access memory(RRAM)based CIM has the advantage of high computing density,non-volatility as well as high energy efficiency.However,previous CIM research has predominantly focused on realizing high energy efficiency and high area efficiency for inference,while little attention has been devoted to addressing the challenges of on-chip programming speed,power consumption,and accuracy.In this paper,a fabri-cated 28 nm 576K RRAM-based CIM macro featuring optimized on-chip programming schemes is proposed to address the issues mentioned above.Different strategies of mapping weights to RRAM arrays are compared,and a novel direct-current ADC design is designed for both programming and inference stages.Utilizing the optimized hybrid programming scheme,4.67×programming speed,0.15×power saving and 4.31×compact weight distribution are realized.Besides,this macro achieves a normalized area efficiency of 2.82 TOPS/mm2 and a normalized energy efficiency of 35.6 TOPS/W.展开更多
With the widespread application of large language models(LLMs)in natural language processing and code generation,traditional High-Level Language Programming courses are facing unprecedented challenges and opportunitie...With the widespread application of large language models(LLMs)in natural language processing and code generation,traditional High-Level Language Programming courses are facing unprecedented challenges and opportunities.As a core programming language for computer science majors,C language remains irreplaceable due to its foundational nature and engineering adaptability.This paper,based on the rapid development of large model technologies,proposes a systematic reform design for C language teaching,focusing on teaching objectives,content structure,teaching methods,and evaluation systems.The article suggests a teaching framework centered on“human-computer collaborative programming,”integrating prompt training,AI-assisted debugging,and code generation analysis,aiming to enhance students’problem modeling ability,programming expression skills,and AI collaboration literacy.展开更多
Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disruptin...Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.展开更多
More than seventy years before airplanes were invented,a twelve⁃year⁃old girl named Ada Lovelace dreamed of flying.She studied birds and experimented with materials to make wings,even writing a guide called Flyology.B...More than seventy years before airplanes were invented,a twelve⁃year⁃old girl named Ada Lovelace dreamed of flying.She studied birds and experimented with materials to make wings,even writing a guide called Flyology.But her curiosity didnt stop there.展开更多
With the rapid development of modern science and technology,the era of artificial intelligence has quietly come.Against the background of the new era,students’learning needs,learning resource acquisition methods,teac...With the rapid development of modern science and technology,the era of artificial intelligence has quietly come.Against the background of the new era,students’learning needs,learning resource acquisition methods,teachers’teaching concepts,teaching tools,and so on have changed significantly.How to carry out teaching reform based on this change has become one of the important issues facing educators,and the same is true for the teaching of computer programming courses.This paper focuses on the teaching reform of AI-enabled computer programming courses,analyzes its basic problems,and puts forward corresponding reform countermeasures to provide a useful reference for front-line teachers.展开更多
Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem....Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm.展开更多
Soft robots, inspired by the flexibility and versatility of biological organisms, have potential in a variety of applications. Recent advancements in magneto-soft robots have demonstrated their abilities to achieve pr...Soft robots, inspired by the flexibility and versatility of biological organisms, have potential in a variety of applications. Recent advancements in magneto-soft robots have demonstrated their abilities to achieve precise remote control through magnetic fields, enabling multi-modal locomotion and complex manipulation tasks. Nonetheless, two main hurdles must be overcome to advance the field: developing a multi-component substrate with embedded magnetic particles to ensure the requisite flexibility and responsiveness, and devising a cost-effective,straightforward method to program three-dimensional distributed magnetic domains without complex processing and expensive machinery. Here, we introduce a cost-effective and simple heat-assisted in-situ integrated molding fabrication method for creating magnetically driven soft robots with three-dimensional programmable magnetic domains. By synthesizing a composite material with neodymium-iron-boron(NdFeB) particles embedded in a polydimethylsiloxane(PDMS) and Ecoflex matrix(PDMS:Ecoflex = 1:2 mass ratio, 50% magnetic particle concentration), we achieved an optimized balance of flexibility, strength, and magnetic responsiveness. The proposed heat-assisted in-situ magnetic domains programming technique,performed at an experimentally optimized temperature of 120℃, resulted in a 2 times magnetization strength(9.5 mT) compared to that at 20℃(4.8 m T), reaching a saturation level comparable to a commercial magnetizer. We demonstrated the versatility of our approach through the fabrication of six kinds of robots, including two kinds of two-dimensional patterned soft robots(2D-PSR), a circular six-pole domain distribution magnetic robot(2D-CSPDMR), a quadrupedal walking magnetic soft robot(QWMSR), an object manipulation robot(OMR), and a hollow thin-walled spherical magneto-soft robot(HTWSMSR). The proposed method provides a practical solution to create highly responsive and adaptable magneto-soft robots.展开更多
基金Supported by the National Key Basic Research Special Fund(2003CB415200)the National Science Foundation(70371032 and 60274048)the Doctoral Foundation of the Ministry of Education(20020486035)
文摘The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite programming problem is presented by making use of two general discrete approximation methods. Simultaneously, the consistence and the epi-convergence of the asymptotic approximation problem are discussed.
基金Supported by the Science Foundation of Shaanxi Provincial Educational Department Natural Science Foundation of China(06JK152) Supported by the Graduate Innovation Project of Yanan uni- versity(YCX201003)
文摘The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unified (C, α, ρ, d)-strictly pseudoconvex functions are presented. The sufficient optimality conditions for multiobjective nonsmooth semi-infinite programming are obtained involving these generalized convexity lastly.
基金the Natural Science Foundation of Shaanxi Province and the Science Foundation of Shaanxi Provincial Educational CommitteeP.R.China
文摘A class of functions called quasi B s invex and pseudo B s invex functions are introduced by using the concept of symmetric gradient. The examples of quasi B s invex and pseudo B s invex functions are given. The sufficient optimality conditions and Mond Weir type duality results are obtained for a nondifferentiable nonlinear semi infinite programming problem involving quasi B s invex and pseudo B s invex functions.
文摘A class of constrained semi-infinite minimax problem is transformed into a simple constrained problem,by means of discretization decomposition and maximum entropy method,making use of surrogate constraint.The paper deals with the convergence of this asymptotic approach method.
文摘This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-type dual model for the nonlinear nondifferentiable multiobjective semiinfinite programming problem and establish weak,strong and strict converse duality theorems relating the primal and the dual problems.
基金This work was partially supported by the National Natural Science Foundation of China(Nos.11471059 and 11671282)the Chongqing Research Program of Basic Research and Frontier Technology(Nos.cstc2014jcyjA00037,cstc2015jcyjB00001 and cstc2014jcyjA00033)+2 种基金the Education Committee Project Research Foundation of Chongqing(Nos.KJ1400618 and KJ1400630)the Program for University Innovation Team of Chongqing(No.CXTDX201601026)the Education Committee Project Foundation of Bayu Scholar.
文摘In this paper,we study optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems.Three new classes of functions,namelyε-pseudoconvex functions of type I and type II andε-quasiconvex functions are introduced,respectively.By utilizing these new concepts,sufficient optimality conditions of approximate solutions for the nonsmooth semi-infinite programming problem are established.Some examples are also presented.The results obtained in this paper improve the corresponding results of Son et al.(J Optim Theory Appl 141:389–409,2009).
基金supported by National Natural Science Foundation of China(Grant No.11271221)
文摘In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the considered problem and develop an algorithm based on the entropy function.It is shown that the global convergence of the proposed algorithm can be obtained under weaker conditions.Some numerical results are presented to show the potential of the proposed algorithm.
基金supported by the National Natural Science Foundation of China under Grant Nos.10971118, 10701047 and 10901096the Natural Science Foundation of Shandong Province under Grant Nos. ZR2009AL019 and BS2010SF010
文摘For the semi-infinite programming (SIP) problem, the authors first convert it into an equivalent nonlinear programming problem with only one inequality constraint by using an integral function, and then propose a smooth penalty method based on a class of smooth functions. The main feature of this method is that the global solution of the penalty function is not necessarily solved at each iteration, and under mild assumptions, the method is always feasible and efficient when the evaluation of the integral function is not very expensive. The global convergence property is obtained in the absence of any constraint qualifications, that is, any accumulation point of the sequence generated by the algorithm is the solution of the SIP. Moreover, the authors show a perturbation theorem of the method and obtain several interesting results. Furthermore, the authors show that all iterative points remain feasible after a finite number of iterations under the Mangasarian-Fromovitz constraint qualification. Finally, numerical results are given.
基金supported by Canada First Research Excellence Fund,Medicine by Design(to CMM)。
文摘Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.
基金supported by National Institute on Aging(NIH-NIA)R21 AG074152(to KMA)National Institute of Allergy and Infectious Diseases(NIAID)grant DP2 AI171150(to KMA)Department of Defense(DoD)grant AZ210089(to KMA)。
文摘The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.
基金supported by the National Natural Science Foundation of China(No.62203256)。
文摘Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time.
文摘This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives.
基金Education and Teaching Research Project of Beijing University of Technology(ER2024KCB08)。
文摘With the rapid development of artificial intelligence technology,AIGC(Artificial Intelligence-Generated Content)has triggered profound changes in the field of high-level language programming courses.This paper deeply explored the application principles,advantages,and limitations of AIGC in intelligent code generation,analyzed the new mode of human-computer collaboration in high-level language programming courses driven by AIGC,discussed the impact of human-computer collaboration on programming efficiency and code quality through practical case studies,and looks forward to future development trends.This research aims to provide theoretical and practical guidance for high-level language programming courses and promote innovative development of high-level language programming courses under the human-computer collaboration paradigm.
基金supported in part by the National Natural Science Foundation of China (62422405, 62025111,62495100, 92464302)the STI 2030-Major Projects(2021ZD0201200)+1 种基金the Shanghai Municipal Science and Technology Major Projectthe Beijing Advanced Innovation Center for Integrated Circuits
文摘Computing-in-memory(CIM)has been a promising candidate for artificial-intelligent applications thanks to the absence of data transfer between computation and storage blocks.Resistive random access memory(RRAM)based CIM has the advantage of high computing density,non-volatility as well as high energy efficiency.However,previous CIM research has predominantly focused on realizing high energy efficiency and high area efficiency for inference,while little attention has been devoted to addressing the challenges of on-chip programming speed,power consumption,and accuracy.In this paper,a fabri-cated 28 nm 576K RRAM-based CIM macro featuring optimized on-chip programming schemes is proposed to address the issues mentioned above.Different strategies of mapping weights to RRAM arrays are compared,and a novel direct-current ADC design is designed for both programming and inference stages.Utilizing the optimized hybrid programming scheme,4.67×programming speed,0.15×power saving and 4.31×compact weight distribution are realized.Besides,this macro achieves a normalized area efficiency of 2.82 TOPS/mm2 and a normalized energy efficiency of 35.6 TOPS/W.
基金Education and Teaching Research Project of Beijing University of Technology(ER2024KCB08)。
文摘With the widespread application of large language models(LLMs)in natural language processing and code generation,traditional High-Level Language Programming courses are facing unprecedented challenges and opportunities.As a core programming language for computer science majors,C language remains irreplaceable due to its foundational nature and engineering adaptability.This paper,based on the rapid development of large model technologies,proposes a systematic reform design for C language teaching,focusing on teaching objectives,content structure,teaching methods,and evaluation systems.The article suggests a teaching framework centered on“human-computer collaborative programming,”integrating prompt training,AI-assisted debugging,and code generation analysis,aiming to enhance students’problem modeling ability,programming expression skills,and AI collaboration literacy.
基金financially supported by Ministerio de Ciencia e Innovación projects SAF2017-82736-C2-1-R to MTMFin Universidad Autónoma de Madrid and by Fundación Universidad Francisco de Vitoria to JS+2 种基金a predoctoral scholarship from Fundación Universidad Francisco de Vitoriafinancial support from a 6-month contract from Universidad Autónoma de Madrida 3-month contract from the School of Medicine of Universidad Francisco de Vitoria。
文摘Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.
文摘More than seventy years before airplanes were invented,a twelve⁃year⁃old girl named Ada Lovelace dreamed of flying.She studied birds and experimented with materials to make wings,even writing a guide called Flyology.But her curiosity didnt stop there.
文摘With the rapid development of modern science and technology,the era of artificial intelligence has quietly come.Against the background of the new era,students’learning needs,learning resource acquisition methods,teachers’teaching concepts,teaching tools,and so on have changed significantly.How to carry out teaching reform based on this change has become one of the important issues facing educators,and the same is true for the teaching of computer programming courses.This paper focuses on the teaching reform of AI-enabled computer programming courses,analyzes its basic problems,and puts forward corresponding reform countermeasures to provide a useful reference for front-line teachers.
基金supported by the Start-up Fund from Hainan University(No.KYQD(ZR)-20077)。
文摘Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm.
基金supported by National Natural Science Foundation of China(Grant Nos.62473277,62473275,62133004,52105072,and 62073230)Jiangsu Provincial Outstanding Youth Program(Grant No.BK20230072)+5 种基金National Key R&D Program of China(Grant Nos.2022YFC3802302 and 2023YFB4705600)Suzhou Industrial Foresight and Key Core Technology Project(Grant No.SYC2022044)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ24E050004)Shenzhen Polytechnic High-level Talent Start-up Project(Grant No.6023330006K)Shenzhen Science and Technology Program(Grant No.JCYJ20210324132810026)a Grant from Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems,Grants from Jiangsu QingLan Project and Jiangsu 333 high-level talents.
文摘Soft robots, inspired by the flexibility and versatility of biological organisms, have potential in a variety of applications. Recent advancements in magneto-soft robots have demonstrated their abilities to achieve precise remote control through magnetic fields, enabling multi-modal locomotion and complex manipulation tasks. Nonetheless, two main hurdles must be overcome to advance the field: developing a multi-component substrate with embedded magnetic particles to ensure the requisite flexibility and responsiveness, and devising a cost-effective,straightforward method to program three-dimensional distributed magnetic domains without complex processing and expensive machinery. Here, we introduce a cost-effective and simple heat-assisted in-situ integrated molding fabrication method for creating magnetically driven soft robots with three-dimensional programmable magnetic domains. By synthesizing a composite material with neodymium-iron-boron(NdFeB) particles embedded in a polydimethylsiloxane(PDMS) and Ecoflex matrix(PDMS:Ecoflex = 1:2 mass ratio, 50% magnetic particle concentration), we achieved an optimized balance of flexibility, strength, and magnetic responsiveness. The proposed heat-assisted in-situ magnetic domains programming technique,performed at an experimentally optimized temperature of 120℃, resulted in a 2 times magnetization strength(9.5 mT) compared to that at 20℃(4.8 m T), reaching a saturation level comparable to a commercial magnetizer. We demonstrated the versatility of our approach through the fabrication of six kinds of robots, including two kinds of two-dimensional patterned soft robots(2D-PSR), a circular six-pole domain distribution magnetic robot(2D-CSPDMR), a quadrupedal walking magnetic soft robot(QWMSR), an object manipulation robot(OMR), and a hollow thin-walled spherical magneto-soft robot(HTWSMSR). The proposed method provides a practical solution to create highly responsive and adaptable magneto-soft robots.