期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sparse convolutional model with semantic expression for waste electrical appliances recognition
1
作者 HAN HongGui LIU YiMing +1 位作者 LI FangYu DU YongPing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第9期2881-2893,共13页
Deep neural networks play an important role in the recognition of waste electrical appliances. However, deep neural network components still lack reliability in decision-making features. To address this problem, a spa... Deep neural networks play an important role in the recognition of waste electrical appliances. However, deep neural network components still lack reliability in decision-making features. To address this problem, a sparse convolutional model with semantic expression(SCMSE) is proposed. First, a low-rank sparse semantic expression component, combining the benefits of residual networks and sparse representation, is adapted to enhance sparse feature extraction and semantic expression. Second, a reliable network architecture is obtained by iterating the optimal sparse solution, enhancing semantic expression. Finally, the results of visualization experiments on the waste electrical appliances dataset demonstrate that the proposed SCMSE can obtain excellent semantic performance. 展开更多
关键词 sparse convolutional model deep neural network semantic expression VISUALIZATION computer vision
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部