期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Self-supporting sea urchin-like Ni-Mo nano-materials as asymmetric electrodes for overall water splitting
1
作者 Jia-Ming Wang Yong-Jian Xu +7 位作者 Ya-Tao Yan Meng-Ting Shao Zhi-An Ye Qian-Hui Wu Fang Guo Chun-Sheng Li Hui Yan Ming Chen 《Rare Metals》 2025年第2期986-997,共12页
Developing efficient and stable electrocatalysts has always been the focus of electrochemical research.Here,sea urchin-like nickel-molybdenum bimetallic phosphide nickel-molybdenum alloy(Ni_(4)Mo)and(Ni-Mo-P)were succ... Developing efficient and stable electrocatalysts has always been the focus of electrochemical research.Here,sea urchin-like nickel-molybdenum bimetallic phosphide nickel-molybdenum alloy(Ni_(4)Mo)and(Ni-Mo-P)were successfully synthesized by hydrothermal,annealing and phosphating methods on nickel foam(NF).The unusual shape of the sea urchin facilitates gas release and mass transfer and increases the interaction between catalysts and electrolytes.The Ni_(4)Mo/NF and Ni-Mo-P/NF electrodes only need overpotentials of 72 and 197 mV to reach 50 mA·cm^(−2) under alkaline conditions for hydrogen evolution reaction and oxygen evolution reaction,respectively.The Ni_(4)Mo/NF and Ni-Mo-P/NF asymmetric electrodes were used as anode and cathode for the overall water splitting,respectively.In 1.0 M KOH,at a voltage of 1.485 V,the electrolytic device generated 50 mA·cm^(−2) current density,maintaining for 24 h without reduction.The labor presents a simple method to synthesize a highly active,low-cost,and strongly durable self-supporting electrode for over-water splitting. 展开更多
关键词 Ni_(4)Mo alloy Bimetallic phosphides selfsupporting electrode Asymmetric electrode Over water splitting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部